Suppr超能文献

MicroPredict:仅使用 16S 扩增子测序数据预测全基因组宏基因组数据的种级分类丰度。

MicroPredict: predicting species-level taxonomic abundance of whole-shotgun metagenomic data using only 16S amplicon sequencing data.

机构信息

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.

Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea.

出版信息

Genes Genomics. 2024 Jun;46(6):701-712. doi: 10.1007/s13258-024-01514-w. Epub 2024 May 3.

Abstract

BACKGROUND

The importance of the human microbiome in the analysis of various diseases is emerging. The two main methods used to profile the human microbiome are 16S rRNA gene sequencing (16S sequencing) and whole-genome shotgun sequencing (WGS). Owing to the full coverage of the genome in sequencing, WGS has multiple advantages over 16S sequencing, including higher taxonomic profiling resolution at the species-level and functional profiling analysis. However, 16S sequencing remains widely used because of its relatively low cost. Although WGS is the standard method for obtaining accurate species-level data, we found that 16S sequencing data contained rich information to predict high-resolution species-level abundances with reasonable accuracy.

OBJECTIVE

In this study, we proposed MicroPredict, a method for accurately predicting WGS-comparable species-level abundance data using 16S taxonomic profile data.

METHODS

We employed a mixed model using two key strategies: (1) modeling both sample- and species-specific information for predicting WGS abundances, and (2) accounting for the possible correlations among different species.

RESULTS

We found that MicroPredict outperformed the other machine learning methods.

CONCLUSION

We expect that our approach will help researchers accurately approximate the species-level abundances of microbiome profiles in datasets for which only cost-effective 16S sequencing has been applied.

摘要

背景

人类微生物组在各种疾病分析中的重要性正在显现。用于分析人类微生物组的两种主要方法是 16S rRNA 基因测序(16S 测序)和全基因组鸟枪法测序(WGS)。由于测序能全面覆盖基因组,WGS 比 16S 测序具有多个优势,包括在物种水平上具有更高的分类解析分辨率和功能解析分析。然而,由于成本相对较低,16S 测序仍然广泛应用。尽管 WGS 是获取准确物种水平数据的标准方法,但我们发现 16S 测序数据包含丰富的信息,可以用合理的准确度预测高分辨率的物种水平丰度。

目的

在本研究中,我们提出了一种名为 MicroPredict 的方法,该方法可以使用 16S 分类分析数据准确预测 WGS 可比的物种水平丰度数据。

方法

我们采用了一种混合模型,使用了两个关键策略:(1)对预测 WGS 丰度的样本和物种特异性信息进行建模;(2)考虑不同物种之间可能存在的相关性。

结果

我们发现 MicroPredict 优于其他机器学习方法。

结论

我们希望我们的方法将有助于研究人员在仅应用了具有成本效益的 16S 测序的数据集上,准确估计微生物组图谱的物种水平丰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验