Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.
Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States.
ACS Appl Bio Mater. 2024 May 20;7(5):3238-3246. doi: 10.1021/acsabm.4c00222. Epub 2024 May 3.
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.
随着严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的持续全球传播,仍然需要探索新的治疗和诊断策略。该病毒通过其刺突蛋白与血管紧张素转换酶 2(ACE2)受体结合进入宿主细胞。在这里,我们开发了一种经过工程改造的、小巧、稳定且无催化活性的 ACE2 版本,称为微型 ACE2(mACE2),旨在与刺突蛋白高亲和力结合。我们利用基于磁性纳米颗粒的测定法,利用 mACE2 的强结合亲和力来开发一种灵敏且特异的 SARS-CoV-2 检测或中和平台。我们的研究结果突出了工程 mACE2 作为对抗 SARS-CoV-2 的有价值工具的潜力。这种基于分段分子设计的小型试剂的成功开发为快速部署此类试剂以诊断和对抗其他病毒疾病提供了概念验证方法。