Suppr超能文献

添加的微塑料、原生土壤特性和流行的气候条件对土壤中的碳和氮含量有影响吗?来自盆载和温室研究的全球数据综合。

Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies.

机构信息

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.

Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China.

出版信息

Environ Sci Technol. 2024 May 14;58(19):8464-8479. doi: 10.1021/acs.est.3c10247. Epub 2024 May 3.

Abstract

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 μm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.

摘要

微塑料威胁土壤生态系统,强烈影响碳(C)和氮(N)含量。微塑料特性与气候和土壤因素之间的相互作用还知之甚少。我们进行了荟萃分析,以评估微塑料特性(类型、形状、大小和含量)、原生土壤特性(质地、pH 值和溶解有机碳(DOC))和气候因素(降水和温度)对土壤中 C 和 N 含量的相互作用。我们发现,低密度聚乙烯降低了全氮(TN)含量,而可生物降解的聚乳酸导致土壤有机碳(SOC)减少。微塑料碎片尤其降低了 TN,降低了团聚体稳定性,增加了 N 矿化和淋失,从而增加了土壤的 C/N 比。微塑料的大小影响结果;那些<200μm 的微塑料降低了 TN 和 SOC 的含量。在微塑料含量为土壤重量的 1%至 2.5%之间时,矿化诱导的养分损失最大。沙质土壤受微塑料污染引起的养分枯竭最为严重。碱性土壤 SOC 耗竭最大,表明 SOC 可降解性高。在低 DOC 土壤中,微塑料污染导致 TN 耗竭比在高 DOC 土壤中增加了两倍。降水和温度较高的地点 TN 和 SOC 含量下降最大。总之,有复杂的相互作用决定了微塑料对土壤健康的影响。微塑料污染总是有土壤 C 和 N 枯竭的风险,但严重程度取决于微塑料特性、原生土壤特性和气候条件,温室气体排放引起的气候变化可能会加剧这种情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验