Suprano Alessia, Zia Danilo, Innocenti Luca, Lorenzo Salvatore, Cimini Valeria, Giordani Taira, Palmisano Ivan, Polino Emanuele, Spagnolo Nicolò, Sciarrino Fabio, Palma G Massimo, Ferraro Alessandro, Paternostro Mauro
Dipartimento di Fisica - Sapienza Università di Roma, Piazza le Aldo Moro 5, I-00185 Roma, Italy.
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica - Emilio Segrè, via Archirafi 36, I-90123 Palermo, Italy.
Phys Rev Lett. 2024 Apr 19;132(16):160802. doi: 10.1103/PhysRevLett.132.160802.
Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.
最近的进展使得将机器学习工具嵌入实验平台以解决关键问题成为可能,这些问题包括量子态性质的表征。基于此,我们在一个光子平台上实现了量子极限学习机,以实现对光子偏振态的资源高效且准确的表征。通过使用高维光子轨道角动量的造币量子行走并在固定基上进行投影测量,实现了这种输入态所演化的底层储能器动力学。我们展示了未知偏振态的重构如何不需要对测量装置进行精细表征,并且对实验缺陷具有鲁棒性,从而为资源经济的态表征提供了一条有前景的途径。