MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
Redox Biol. 2024 Jul;73:103174. doi: 10.1016/j.redox.2024.103174. Epub 2024 Apr 29.
Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.
核糖体介导蛋白质合成,这是细胞内最耗能的活动之一,而线粒体是产生能量的主要来源之一。线粒体的形态和功能如何适应核糖体缺陷,以应对核糖体缺陷会损害蛋白质合成并影响细胞活力,这一点我们还知之甚少。在这里,我们使用裂殖酵母 Schizosaccharomyces Pombe 作为模型生物来研究核糖体和线粒体之间的相互作用。我们发现,由 Rpl2702 缺失引起的核糖体损伤会激活涉及 Sty1/MAPK 和 mTOR 的信号通路,以调节线粒体的形态和功能。具体而言,我们证明了 Sty1/MAPK 在不依赖于 mTOR 的情况下诱导线粒体碎片化,而 Sty1/MAPK 和 mTOR 都增加了线粒体膜电位和线粒体活性氧 (mROS) 的水平。此外,我们证明了 Sty1/MAPK 作用于 Tor1/TORC2 和 Tor1/TORC2 的上游,并且需要 Tor2/TORC1 的激活。增强线粒体膜电位和 mROS 功能促进了携带核糖体缺陷的细胞的增殖。因此,我们的研究揭示了一个以前未被描述的 Sty1/MAPK-mTOR 信号轴,该信号轴可响应核糖体损伤来调节线粒体的形态和功能,并为细胞对蛋白质合成受损的分子和生理适应提供了新的见解。