Xiong Jie, Li Zijian
School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Environ Res. 2024 Jul 1;252(Pt 4):119036. doi: 10.1016/j.envres.2024.119036. Epub 2024 May 1.
An increasing number of per- and polyfluoroalkyl substances (PFAS) exposed to the environment may pose a threat to organisms and human beings. However, there is a lack of simulations comprehensively addressing and comparing the bioaccumulation of PFAS across all three major exposure routes (oral, inhalation, and dermal), especially for dermal uptake. In this study, we proposed a physiologically based kinetic (PBK) model for PFAS, aiming to predict bioaccumulation factors (BAF) in fish by considering these diverse exposure routes. 15 PFAS were used for model validation, and 11 PFAS from Taihu Lake were used for exposure contribution modeling. Approximately 64% of estimations fell within 10-fold model bias from measurements in Taihu Lake, underscoring the potential efficacy of the developed PBK model in predicting BAFs for fish. The dermal route emerges as a contributor to short-chain PFAS exposure. For example, it ranged widely from 46% to 75% (mean) for all modeling short-chain PFAS (C6-C7) in Taihu Lake. It indicated the criticality of considering dermal exposure for PFAS in fish, highlighting a gap in field studies to unravel cutaneous intake mechanisms and contributions. For longer carbon chains of PFAS (C8-C12), dermal exposure accounted for 2%-27% for all species of aquatic organisms. The fish's lipid fraction and water content played a significant role in the contribution of PFAS intake through cutaneous exposure and inhalation. K had a significant positive correlation with skin intake rate (p < 0.05) and gill intake rate (p < 0.001), while having a significant negative correlation with skin intake (p < 0.05) and skin intake contribution (p < 0.001). Based on the proposed modeling approach, we have introduced a simulation spreadsheet for projecting PFAS BAFs in fish tissues, hopefully broadening the predictive operational tool for a variety of chemical species.
越来越多暴露于环境中的全氟和多氟烷基物质(PFAS)可能对生物体和人类构成威胁。然而,目前缺乏全面探讨和比较PFAS在所有三种主要暴露途径(口服、吸入和皮肤接触)下生物累积情况的模拟研究,尤其是关于皮肤吸收方面。在本研究中,我们提出了一种基于生理学的PFAS动力学(PBK)模型,旨在通过考虑这些不同的暴露途径来预测鱼类体内的生物累积因子(BAF)。使用了15种PFAS进行模型验证,并使用来自太湖的11种PFAS进行暴露贡献建模。大约64%的估计值与太湖测量值的模型偏差在10倍以内,这突出了所开发的PBK模型在预测鱼类BAF方面的潜在有效性。皮肤接触途径是短链PFAS暴露的一个促成因素。例如,太湖中所有建模短链PFAS(C6 - C7)的皮肤接触贡献率范围广泛,从46%到75%(平均值)。这表明在鱼类中考虑PFAS的皮肤接触暴露至关重要,凸显了在野外研究中揭示皮肤摄取机制和贡献方面的差距。对于PFAS较长的碳链(C8 - C12),皮肤接触暴露在所有水生生物物种中占2% - 27%。鱼类的脂质分数和含水量在通过皮肤接触和吸入摄取PFAS的贡献中发挥了重要作用。K与皮肤摄取率(p < 0.05)和鳃摄取率(p < 0.001)呈显著正相关,而与皮肤摄取量(p < 0.05)和皮肤摄取贡献(p < 0.001)呈显著负相关。基于所提出的建模方法,我们引入了一个模拟电子表格来预测鱼类组织中的PFAS BAF,有望拓宽针对各种化学物质的预测操作工具。