Suppr超能文献

模拟建模在水生食物网中与结构相关的全氟和多氟烷基物质的生物积累和生物放大。

Simulation modelling the structure related bioaccumulation and biomagnification of per- and polyfluoroalkyl substances in aquatic food web.

机构信息

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China.

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China.

出版信息

Sci Total Environ. 2022 Sep 10;838(Pt 3):156397. doi: 10.1016/j.scitotenv.2022.156397. Epub 2022 Jun 1.

Abstract

Until now, there is no bioaccumulation model to predict bioaccumulation of polyfluoroalkyl substances (PFASs) in aquatic organisms due to their unique amphiphilic properties. For the first time, protein contents instead of lipid contents of organisms were used in bioaccumulation models to predict the concentrations and reveal the accumulation mechanisms of PFASs in various aquatic organisms, based on the available data. Comparison between the modeled and measured results indicated the models were promising to predict the PFAS concentrations in the fishes at different trophic levels very well, as well as their bioaccumulation factors (BAF) and trophic magnification factors (TMF) of PFASs in fish. Both water and sediment are important exposure sources of PFASs in aquatic organisms. As the two main uptake pathways, the contribution of gill respiratory decreases while that of dietary intake increases with the chain length of PFASs increasing. Fecal excretion and gill respiration are the main pathways for fish to eliminate PFASs, and their relative contributions increase and decrease respectively with chain length. The short-chain (C6-C8) perfluoroalkyl acids (PFAAs) are greatly eliminated via gill respiratory quickly, leading to their very low BAFs. As the carbon chain length increases, dietary intake becomes dominant in the uptake, while elimination is mainly through fecal excretion with relatively low rates, especially in the fishes with high protein contents. For the very long chain (C12-C16) PFASs, they are very difficult to excrete with a low total elimination rate constant (k = 0.463-0.743 d), thus leading to their high BAFs and TMFs. The high intake rate but low elimination rate, as well as the high water and sediment concentrations together contribute to the highest accumulated concentration perfluorooctane sulfonic acid in the fish of Taihu Lake.

摘要

到目前为止,由于其独特的两亲性特性,还没有生物积累模型可以预测多氟烷基物质(PFASs)在水生生物中的生物积累。首次基于现有数据,使用生物体内的蛋白质含量而不是脂质含量来预测 PFASs 在各种水生生物中的浓度,并揭示其积累机制。模型预测结果与实测结果的比较表明,这些模型很有希望很好地预测不同营养级鱼类中的 PFAS 浓度,以及它们的生物积累因子(BAF)和 PFAS 在鱼类中的营养放大因子(TMF)。水和沉积物都是水生生物中 PFASs 的重要暴露源。作为两种主要的吸收途径,随着 PFASs 链长的增加,鳃呼吸的贡献减少,而饮食摄入的贡献增加。粪便排泄和鳃呼吸是鱼类消除 PFASs 的主要途径,它们的相对贡献分别随着链长的增加而增加和减少。短链(C6-C8)全氟烷酸(PFAAs)通过鳃呼吸迅速大量消除,导致其 BAF 非常低。随着碳链长度的增加,饮食摄入在吸收中变得占主导地位,而消除主要通过粪便排泄进行,其速率相对较低,特别是在蛋白质含量较高的鱼类中。对于非常长链(C12-C16)的 PFASs,它们很难通过低的总消除率常数(k = 0.463-0.743 d)进行排泄,因此导致其高 BAF 和 TMF。高摄入率但低消除率,以及高的水和沉积物浓度共同导致太湖鱼类中全氟辛烷磺酸的积累浓度最高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验