Department of Population Health, NYU Langone Health, New York University School of Medicine, New York, New York, USA.
Leon H. Charney Division of Cardiology, Cardiac Electrophysiology, NYU Langone Health, New York University School of Medicine, New York, New York, USA.
JACC Clin Electrophysiol. 2024 May;10(5):956-966. doi: 10.1016/j.jacep.2024.01.022. Epub 2024 May 1.
Prediction of drug-induced long QT syndrome (diLQTS) is of critical importance given its association with torsades de pointes. There is no reliable method for the outpatient prediction of diLQTS.
This study sought to evaluate the use of a convolutional neural network (CNN) applied to electrocardiograms (ECGs) to predict diLQTS in an outpatient population.
We identified all adult outpatients newly prescribed a QT-prolonging medication between January 1, 2003, and March 31, 2022, who had a 12-lead sinus ECG in the preceding 6 months. Using risk factor data and the ECG signal as inputs, the CNN QTNet was implemented in TensorFlow to predict diLQTS.
Models were evaluated in a held-out test dataset of 44,386 patients (57% female) with a median age of 62 years. Compared with 3 other models relying on risk factors or ECG signal or baseline QTc alone, QTNet achieved the best (P < 0.001) performance with a mean area under the curve of 0.802 (95% CI: 0.786-0.818). In a survival analysis, QTNet also had the highest inverse probability of censorship-weighted area under the receiver-operating characteristic curve at day 2 (0.875; 95% CI: 0.848-0.904) and up to 6 months. In a subgroup analysis, QTNet performed best among males and patients ≤50 years or with baseline QTc <450 ms. In an external validation cohort of solely suburban outpatient practices, QTNet similarly maintained the highest predictive performance.
An ECG-based CNN can accurately predict diLQTS in the outpatient setting while maintaining its predictive performance over time. In the outpatient setting, our model could identify higher-risk individuals who would benefit from closer monitoring.
鉴于药物引起的长 QT 综合征(diLQTS)与尖端扭转型室性心动过速有关,因此预测其发生具有重要意义。目前还没有可靠的门诊预测 diLQTS 的方法。
本研究旨在评估卷积神经网络(CNN)应用于心电图(ECG)在门诊人群中预测 diLQTS 的能力。
我们确定了 2003 年 1 月 1 日至 2022 年 3 月 31 日期间新开具 QT 延长药物的所有成年门诊患者,这些患者在过去 6 个月内进行了 12 导联窦性 ECG。使用风险因素数据和 ECG 信号作为输入,将 CNN QTNet 实现于 TensorFlow 中以预测 diLQTS。
在 44386 例患者(57%为女性)的留取测试数据集(中位年龄为 62 岁)中对模型进行了评估。与另外 3 种依赖风险因素或 ECG 信号或基线 QTc 的模型相比,QTNet 实现了最佳(P<0.001)的性能,曲线下面积的平均值为 0.802(95%CI:0.786-0.818)。在生存分析中,QTNet 在第 2 天(0.875;95%CI:0.848-0.904)和长达 6 个月时的逆概率校正加权曲线下面积也最高。在亚组分析中,QTNet 在男性和年龄≤50 岁或基线 QTc<450ms 的患者中表现最佳。在仅为郊区门诊实践的外部验证队列中,QTNet 同样保持了最高的预测性能。
基于 ECG 的 CNN 可在门诊环境中准确预测 diLQTS,同时随着时间的推移保持其预测性能。在门诊环境中,我们的模型可以识别出需要更密切监测的高危个体。