Suppr超能文献

使用移动心电图设备通过人工智能评估心率校正QT间期

Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device.

作者信息

Giudicessi John R, Schram Matthew, Bos J Martijn, Galloway Conner D, Shreibati Jacqueline B, Johnson Patrick W, Carter Rickey E, Disrud Levi W, Kleiman Robert, Attia Zachi I, Noseworthy Peter A, Friedman Paul A, Albert David E, Ackerman Michael J

机构信息

Clinician-Investigator Training Program (J.R.G.), Mayo Clinic, Rochester, MN.

AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).

出版信息

Circulation. 2021 Mar 30;143(13):1274-1286. doi: 10.1161/CIRCULATIONAHA.120.050231. Epub 2021 Feb 1.

Abstract

BACKGROUND

Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities.

METHODS

Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L.

RESULTS

In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively.

CONCLUSIONS

Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.

摘要

背景

心率校正QT间期(QTc)延长,无论是继发于药物、包括先天性长QT综合征在内的遗传因素,和/或包括严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)介导的2019冠状病毒病(COVID-19)在内的全身性疾病,都可能易患室性心律失常和心源性猝死。目前,QTc评估和监测很大程度上依赖于12导联心电图。因此,我们试图训练并验证一种基于人工智能(AI)的12导联心电图算法来测定QTc,然后在一个富含复极异常的人群中,对从移动心电图(mECG)设备获取的心电图记录进行前瞻性测试。

方法

使用来自538200例患者的超过160万份12导联心电图,推导(训练患者n = 250767;测试患者n = 107920)并验证(n = 179513例患者)一个深度神经网络(DNN),以心脏病专家解读的QTc值作为“金标准”来预测QTc。然后,在686例患有遗传性心脏病(50%为长QT综合征)的患者中前瞻性测试该DNN检测临床相关QTc延长(如QTc≥500毫秒)的能力,这些患者的QTc值来自12导联心电图和与市售AliveCor KardiaMobile 6L相当的原型mECG设备。

结果

在验证样本中,观察到人工解读的QTc值与DNN预测的QTc值之间有高度一致性(-1.76±23.14毫秒)。同样,在富含遗传性心脏病的前瞻性数据集中,DNN根据mECG记录预测的QTc值与QT专家从12导联心电图标注的QTc值(-0.45±24.73毫秒)以及商业核心心电图实验室[10.52±25.64毫秒]之间的差异很小。当应用于mECG记录时,DNN检测QTc值≥500毫秒的能力的曲线下面积、敏感性和特异性分别为0.97、80.0%和94.4%。

结论

使用配备智能手机的电极,人工智能DNN可以准确预测标准12导联心电图的QTc。通过基于人工智能的mECG设备估计QTc,可能为在各种无法进行标准12导联心电图检查或成本效益不高的临床环境中筛查获得性和先天性长QT综合征提供一种经济有效的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验