Suppr超能文献

从富硒土壤中分离出的高耐亚硒酸盐细菌将亚硒酸盐还原为硒纳米颗粒

Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil.

作者信息

Ge Meng, Zhou Shaofeng, Li Daobo, Song Da, Yang Shan, Xu Meiying

机构信息

Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.

Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.

出版信息

J Hazard Mater. 2024 Jul 5;472:134491. doi: 10.1016/j.jhazmat.2024.134491. Epub 2024 May 1.

Abstract

The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.

摘要

微生物将亚硒酸盐还原为元素硒纳米颗粒(SeNPs)被认为是许多细菌对亚硒酸盐进行有效解毒的过程。在本研究中,选择了具有高亚硒酸盐还原效率或耐受性的解淀粉芽孢杆菌属ES129和嗜盐芽孢杆菌属ES111,对它们在去除亚硒酸盐和回收有价值的SeNPs方面的性能进行系统和比较研究。亚硒酸盐还原的动力学监测表明,ES129在4.24 mM浓度下以及ES111在4.88 mM浓度下实现了亚硒酸盐向SeNPs的最高转化效率。超微分析表明,ES111和ES129产生的SeNPs在细胞质中形成,随后通过细胞裂解过程释放到细胞外空间。此外,转录组分析表明,在亚硒酸盐还原过程中,参与杆菌硫醇生物合成、硒化合物代谢和脯氨酸代谢的基因表达显著上调,这表明亚硒酸盐向Se的转化可能涉及多种途径。此外,与核苷酸切除修复和抗氧化相关酶相关的基因上调可能增强细菌对亚硒酸盐的耐受性。一般来说,探索高耐亚硒酸盐细菌的亚硒酸盐还原和耐受机制对于有效利用微生物进行环境修复具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验