Suppr超能文献

枯草芽孢杆菌 168 中亚硒酸盐还原的新机制:基于转录组分析证实多途径介导的修复。

Novel mechanisms of selenite reduction in Bacillus subtilis 168:Confirmation of multiple-pathway mediated remediation based on transcriptome analysis.

机构信息

The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Life Science, University of Science and Technology of China, Hefei 230027 Anhui, China.

Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.

出版信息

J Hazard Mater. 2022 Jul 5;433:128834. doi: 10.1016/j.jhazmat.2022.128834. Epub 2022 Apr 2.

Abstract

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. Bacillus subtilis is a probiotic bacterium that can reduce Se(IV) to SeNPs under aerobic conditions. However, current knowledge on the molecular mechanisms of selenite reduction by B. subtilis remains limited. Here, the reduction of Se(IV) by probiotic bacterium Bacillus subtilis 168 was systematically analysed, and the molecular mechanisms of selenium nanoparticle (SeNPs) formation were characterised in detail. B. subtilis 168 reduced 5.0 mM selenite by nearly 40% in 24 h, and the produced SeNPs were spherical and localised intracellularly or extracellularly. FTIR (Fourier transform infrared) spectroscopy suggested the presence of proteins, lipids, and carbohydrates on the surface of the isolated SeNPs. Transcriptome data analysis revealed that the expression of genes associated with the proline metabolism, glutamate metabolism, and sulfite metabolism pathways was significantly up-regulated. Gene mutation and complementation revealed the ability of PutC, GabD, and CysJI to reduce selenite in vivo. In vitro experiments demonstrated that PutC, GabD, and CysJI could catalyse the reduction of Se(IV) under optimal conditions using NADPH as a cofactor. To the best of our knowledge, our study is the first to demonstrate the involvement of PutC and GabD in selenite reduction. Particularly, our findings demonstrated that the reduction of Se(IV) was mediated by multiple pathways both in vivo and in vitro. Our findings thus provide novel insights into the molecular mechanisms of Se(VI) reduction in aerobic bacteria.

摘要

微生物对亚硒酸盐的生物转化是一种有效的解毒和同化过程。枯草芽孢杆菌是一种益生菌,可以在有氧条件下将硒(IV)还原为硒纳米颗粒。然而,目前对于枯草芽孢杆菌还原亚硒酸盐的分子机制知之甚少。在这里,我们系统地分析了益生菌枯草芽孢杆菌 168 还原亚硒酸盐的过程,并详细描述了形成硒纳米颗粒(SeNPs)的分子机制。枯草芽孢杆菌 168 在 24 小时内将 5.0mM 的亚硒酸盐还原了近 40%,生成的 SeNPs 呈球形,存在于细胞内或细胞外。傅里叶变换红外(FTIR)光谱表明分离的 SeNPs 表面存在蛋白质、脂质和碳水化合物。转录组数据分析表明,与脯氨酸代谢、谷氨酸代谢和亚硫酸盐代谢途径相关的基因表达显著上调。基因突变和互补实验表明,PutC、GabD 和 CysJI 能够在体内还原亚硒酸盐。体外实验表明,PutC、GabD 和 CysJI 可以在最佳条件下使用 NADPH 作为辅助因子催化 Se(IV)的还原。据我们所知,我们的研究首次表明 PutC 和 GabD 参与了亚硒酸盐的还原。特别是,我们的研究结果表明,在体内和体外,Se(IV)的还原都是由多个途径介导的。因此,我们的研究结果为好氧细菌中 Se(VI)还原的分子机制提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验