Suppr超能文献

基于金-硅异质纳米菠萝结构的自组装 SERS 基底可靠检测孔雀石绿。

Reliable detection of malachite green by self-assembled SERS substrates based on gold-silicon heterogeneous nano pineapple structures.

机构信息

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Food Chem. 2024 Sep 1;451:139454. doi: 10.1016/j.foodchem.2024.139454. Epub 2024 Apr 25.

Abstract

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.

摘要

由于异质二聚体丰富的光学性质和各种组合方式,调控异质二聚体纳米粒子的形态以及进一步利用其不对称特性来实现实际应用至关重要。本工作使用硅不对称地包裹金球的一半,并在裸露的金表面生长金树枝,形成异质纳米菠萝(NPP),通过化学增强和避雷针效应分别有效提高表面增强拉曼散射(SERS)性能。NPP 的不对称结构使它们能够自组装成具有一致分支方向的单层膜。与无序基底相比,所制备的基底具有更高的均匀性和更好的 SERS 能力,并实现了对贻贝中孔雀石绿(MG)的可靠检测,检测限为 7.8×10 M。这项工作为进一步修正异质二聚体的形态以及利用不对称二聚体进行实际光化学和生物医学传感提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验