Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.
Commun Biol. 2024 May 4;7(1):528. doi: 10.1038/s42003-024-06217-2.
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
阿尔茨海默病(AD)中的神经元功能障碍和认知恶化可能是由多种病理生理因素引起的。然而,人类的机制证据仍然很少,需要改进非侵入性技术和综合模型。我们引入了基于全脑威尔逊-考恩振荡器的个性化 AD 计算模型,并纳入了来自 AD 谱系中的 132 个人的静息状态功能 MRI、淀粉样蛋白-β(Aβ)和 tau-PET,以评估有毒蛋白沉积对神经元活动的直接影响。这种针对个体的方法揭示了关键的病理机制相互作用,包括 Aβ 和 tau 对认知障碍的协同作用以及随着疾病进展神经元兴奋性的增加。数据衍生的神经元兴奋性值强烈预测了临床上相关的 AD 血浆生物标志物浓度(p-tau217、p-tau231、p-tau181、GFAP)和通过体素形态计量学获得的灰质萎缩。此外,重建的 EEG 代理数量显示了 AD 电生理改变的特征(theta 波段活动增强和 alpha 减少),这些改变与 Aβ 阳性和边缘 tau 受累后发生。小胶质细胞激活对神经元活动的影响不太明确,这可能是由于神经影像学在映射神经保护与有害激活表型方面的局限性。脑活动机制模型可以进一步阐明复杂的神经退行性过程,并加速预防性/治疗性干预措施。