Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
Raptor Pharm & Tox, Ltd, Apex, NC, USA.
Arch Toxicol. 2024 Jun;98(6):1795-1807. doi: 10.1007/s00204-024-03723-4. Epub 2024 May 5.
The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17β-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.
内分泌系统通过配体和受体的相互作用发挥作用。配体表现出与受体结合和相互作用的效力。效力是亲和力和效能的产物。效力和生理浓度决定了配体产生生理效应的能力。配体-受体相互作用的动力学行为符合质量作用定律。质量作用定律定义了配体与在任何生理浓度下占据其同源受体的分数之间的亲和力关系。我们之前确定了通过人雌激素受体-α(ERα)产生临床可观察的雌激素激动剂作用所需的最低配体效力。通过检查植物雌激素和膳食补充剂的数据,我们证明效力低于主要内源性激素 17β-雌二醇(E2)的千分之一的 ERα 配体不会产生临床可观察的雌激素作用。这使我们能够为 ERα 配体提出相对于 E2 的 1×10 的人类相关效力阈值(HRPT)。在这里,我们检验了这样一个假设,即 ERα 的 HRPT 是由内源性 ERα 配体的正常代谢环境引起的受体占据引起的。代谢环境包括激素的前体、激素的代谢物和其他正常代谢产物。当存在一些内源性 ERα 配体和 E2 的正常循环水平时,我们已经计算了效力低于和高于先前建立的 HRPT 的 ERα 配体的受体占有率。受体占有率计算表明,效力比 HRPT 高十倍以上的个别 ERα 配体可以与内源性代谢环境的个别成分竞争 ERα 的占有率,并且可以与在人血液中自然发现的这些成分的混合物竞争占有率。效力比 HRPT 低十倍以上的配体无法成功竞争 ERα。这些结果表明,我们之前提出的 ERα 激动作用的 HRPT(相对于 E2 为 10)非常保守,应被视为对雌激素途径潜在干扰的有力证据。对于效力为 E2 的 10 的化学品,必须考虑到其具有雌激素内分泌干扰的潜力,并且需要有佐证证据。最重要的是,这项工作表明,内源性代谢环境是观察到的 ERα 激动剂 HRPT 的原因,该 HRPT 也适用于 ERα 拮抗剂,并且它提供了一个基于使用正常代谢中内源性成分的良好表征特性和浓度的分子动力学基本原理的令人信服的机制解释。