Suppr超能文献

动力学推导的最大剂量(KMD)证实八甲基环四硅氧烷(D4)的高剂量效应与人体无关。

Kinetically-derived maximal dose (KMD) confirms lack of human relevance for high-dose effects of octamethylcyclotetrasiloxane (D4).

作者信息

Borgert Christopher J, Burgoon Lyle D, Fuentes Claudio

机构信息

Applied Pharmacology and Toxicology, Inc., and University of Florida College of Veterinary Medicine, Gainesville, FL, USA.

Raptor Pharm & Tox, Ltd, Apex, NC, USA.

出版信息

Arch Toxicol. 2025 Feb;99(2):611-621. doi: 10.1007/s00204-024-03914-z. Epub 2025 Jan 12.

Abstract

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated. Toxicity produced at doses above the KMD can be qualitatively different from toxicity produced at lower doses. Here, we test the hypothesis that high-dose-dependent toxicological effects of octamethylcyclotetrasiloxane (D4) occur secondary to kinetic overload. Octamethylcyclotetrasiloxane (D4) is a volatile, highly lipophilic monomer used to produce silicone polymers, which are ingredients in many consumer products and used widely in industrial applications and processes. Chronic inhalation at D4 concentrations 10 times greater than human exposures produces mild effects in rat respiratory tract, liver weight increase and pigment accumulation, nephropathy, uterine endometrial epithelial hyperplasia, non-significant increased uterine endometrial adenomas, and reduced fertility secondary to inhibition of rat-specific luteinizing hormone (LH) surge. Mechanistic studies indicate a lack of human relevance for most of these effects. Respiratory tract effects arise in rats due to direct epithelial contact with mixed vapor/aerosols and increased liver weight is a rodent-specific adaptative induction of drug-metabolizing hepatic enzymes. D4 is not mutagenic or genotoxic, does not interact with dopamine receptors, and interacts at ERα with potency insufficient to cause uterine effects or to alter the LH surge in rats. These mechanistic findings suggest high-dose-dependence of the toxicological effects secondary to kinetic overload, a hypothesis that can be tested when appropriate kinetic data are available that can be probed for the existence of a KMD. We applied Bayesian analysis with differential equations to information from kinetic studies on D4 to build statistical distributions of plausible values of the K and V for D4 elimination. From those distributions of likely K and V values, a set of Michaelis-Menten equations were generated that are likely to represent the slope function for the relationship between D4 exposure and blood concentration. The resulting Michaelis-Menten functions were then investigated using a change-point methodology known as the "kneedle" algorithm to identify the probable KMD range. We validated our K and V using out of sample data. Analysis of the Michaelis-Menten elimination curve generated from those V and K values indicates a KMD with an interquartile range of 230.0-488.0 ppm [2790-5920 mg/m; 9.41-19.96 µM]. The KMD determined here for D4 is consistent with prior work indicating saturation of D4 metabolism at approximately 300 ppm [3640 mg/m; 12.27 µM] and supports the hypothesis that many adverse effects of D4 arise secondary to high-dose-dependent events, likely due to mechanisms of action that cannot occur at concentrations below the KMD. Regulatory methods to evaluate D4 for human health protection should avoid endpoint data from rodents exposed to D4 above the KMD range and future toxicological testing should focus on doses below the KMD range.

摘要

动力学推导的最大剂量(KMD)定义为相对于较低剂量时动力学不变的最大外部剂量,例如,动力学过程未饱和的剂量。高于KMD的剂量产生的毒性可能与较低剂量产生的毒性在性质上有所不同。在此,我们检验以下假设:八甲基环四硅氧烷(D4)的高剂量依赖性毒理学效应继发于动力学过载。八甲基环四硅氧烷(D4)是一种挥发性、高度亲脂性的单体,用于生产有机硅聚合物,这些聚合物是许多消费品中的成分,并广泛用于工业应用和工艺中。以比人类暴露浓度高10倍的D4浓度进行慢性吸入,会对大鼠呼吸道产生轻微影响,导致肝脏重量增加和色素沉着、肾病、子宫内膜上皮增生、子宫内膜腺瘤无显著增加,以及由于抑制大鼠特异性促黄体生成素(LH)激增而导致生育力下降。机制研究表明,这些效应中的大多数与人类无关。大鼠呼吸道效应是由于上皮直接接触混合蒸气/气溶胶引起的,肝脏重量增加是啮齿动物特有的药物代谢肝酶适应性诱导。D4没有致突变性或基因毒性,不与多巴胺受体相互作用,并且与雌激素受体α相互作用的效力不足以引起子宫效应或改变大鼠的LH激增。这些机制研究结果表明,毒理学效应的高剂量依赖性继发于动力学过载,当有合适的动力学数据可用于探究KMD的存在时,这一假设可以得到检验。我们将贝叶斯分析与微分方程应用于D4动力学研究的信息,以建立D4消除的K和V的合理值的统计分布。从这些可能的K和V值分布中,生成了一组米氏方程,这些方程可能代表D4暴露与血药浓度之间关系的斜率函数。然后使用一种称为“kneedle”算法的变点方法研究所得的米氏函数,以确定可能的KMD范围。我们使用样本外数据验证了我们的K和V。对由这些V和K值生成的米氏消除曲线的分析表明,KMD的四分位间距为230.0 - 488.0 ppm[2790 - 5920 mg/m;9.41 - 19.96 μM]。此处确定的D4的KMD与先前的研究结果一致,表明D4代谢在约300 ppm[3640 mg/m;12.27 μM]时饱和,并支持以下假设:D4的许多不良反应继发于高剂量依赖性事件,可能是由于在低于KMD的浓度下无法发生的作用机制。评估D4对人类健康保护作用的监管方法应避免使用高于KMD范围的D4暴露啮齿动物的终点数据,未来的毒理学测试应侧重于低于KMD范围的剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc16/11774993/e449cfd082cc/204_2024_3914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验