Ma Liyun, Han Liguo, Feng Qiang
Jilin University, College of Geoexploration Science and Technology, Changchun, 130026, China.
Sci Rep. 2024 May 6;14(1):10319. doi: 10.1038/s41598-024-61251-8.
Seismic imaging techniques play a crucial role in interpreting subsurface geological structures by analyzing the propagation and reflection of seismic waves. However, traditional methods face challenges in achieving high resolution due to theoretical constraints and computational costs. Leveraging recent advancements in deep learning, this study introduces a neural network framework that integrates Transformer and Convolutional Neural Network (CNN) architectures, enhanced through Adaptive Spatial Feature Fusion (ASFF), to achieve high-resolution seismic imaging. Our approach directly maps seismic data to reflection models, eliminating the need for post-processing low-resolution results. Through extensive numerical experiments, we demonstrate the outstanding ability of this method to accurately infer subsurface structures. Evaluation metrics including Root Mean Square Error (RMSE), Correlation Coefficient (CC), and Structural Similarity Index (SSIM) emphasize the model's capacity to faithfully reconstruct subsurface features. Furthermore, noise injection experiments showcase the reliability of this efficient seismic imaging method, further underscoring the potential of deep learning in seismic imaging.
地震成像技术通过分析地震波的传播和反射,在解释地下地质结构方面发挥着至关重要的作用。然而,由于理论限制和计算成本,传统方法在实现高分辨率方面面临挑战。利用深度学习的最新进展,本研究引入了一种神经网络框架,该框架集成了Transformer和卷积神经网络(CNN)架构,并通过自适应空间特征融合(ASFF)进行增强,以实现高分辨率地震成像。我们的方法直接将地震数据映射到反射模型,无需对低分辨率结果进行后处理。通过广泛的数值实验,我们证明了该方法在准确推断地下结构方面的卓越能力。包括均方根误差(RMSE)、相关系数(CC)和结构相似性指数(SSIM)在内的评估指标强调了该模型忠实地重建地下特征的能力。此外,噪声注入实验展示了这种高效地震成像方法的可靠性,进一步凸显了深度学习在地震成像中的潜力。