Miele Roberto, Azevedo Leonardo
CERENA, Department of Mineral and Energy Resources Engineering, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
Sci Rep. 2024 Mar 1;14(1):5122. doi: 10.1038/s41598-024-55683-5.
Predicting the subsurface spatial distribution of geological facies from fullstack geophysical data is a main step in the geo-modeling workflow for energy exploration and environmental tasks and requires solving an inverse problem. Generative adversarial networks (GANs) have shown great potential for geologically accurate probabilistic inverse modeling, but existing methods require multiple sequential steps and do not account for the spatial uncertainty of facies-dependent continuous properties, linking the facies to the observed geophysical data. This can lead to biased predictions of facies distributions and inaccurate quantification of the associated uncertainty. To overcome these limitations, we propose a GAN able to learn the physics-based mapping between facies and seismic domains, while accounting for the spatial uncertainty of such facies-dependent properties. During its adversarial training, the network reads the observed geophysical data, providing solutions to the inverse problems directly in a single step. The method is demonstrated on 2-D examples, using both synthetic and real data from the Norne field (Norwegian North Sea). The results show that the trained GAN can model facies patterns matching the spatial continuity patterns observed in the training images, fitting the observed geophysical data, and with a variability proportional to the spatial uncertainty of the facies-dependent properties.
从全栈地球物理数据预测地质相的地下空间分布是能源勘探和环境任务地质建模工作流程中的一个主要步骤,并且需要解决一个反问题。生成对抗网络(GAN)在地质精确概率反演建模方面已显示出巨大潜力,但现有方法需要多个连续步骤,并且没有考虑与相相关的连续属性的空间不确定性,而这种不确定性将相与观测到的地球物理数据联系起来。这可能导致相分布的预测有偏差,以及相关不确定性的量化不准确。为了克服这些限制,我们提出了一种GAN,它能够学习相和地震域之间基于物理的映射,同时考虑此类与相相关属性的空间不确定性。在对抗训练期间,该网络读取观测到的地球物理数据,直接在单个步骤中为反问题提供解决方案。使用来自挪威北海诺尔内油田的合成数据和真实数据,在二维示例中展示了该方法。结果表明,经过训练的GAN可以对与训练图像中观察到的空间连续性模式相匹配的相模式进行建模,拟合观测到的地球物理数据,并且其变异性与与相相关属性的空间不确定性成比例。