De la Fuente Ildefonso M, Carrasco-Pujante Jose, Camino-Pontes Borja, Fedetz Maria, Bringas Carlos, Pérez-Samartín Alberto, Pérez-Yarza Gorka, López José I, Malaina Iker, Cortes Jesus M
Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa 48940, Spain.
Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia 30100, Spain.
PNAS Nexus. 2024 Apr 20;3(5):pgae171. doi: 10.1093/pnasnexus/pgae171. eCollection 2024 May.
Directional motility is an essential property of cells. Despite its enormous relevance in many fundamental physiological and pathological processes, how cells control their locomotion movements remains an unresolved question. Here, we have addressed the systemic processes driving the directed locomotion of cells. Specifically, we have performed an exhaustive study analyzing the trajectories of 700 individual cells belonging to three different species (, , and ) in four different scenarios: in absence of stimuli, under an electric field (galvanotaxis), in a chemotactic gradient (chemotaxis), and under simultaneous galvanotactic and chemotactic stimuli. All movements were analyzed using advanced quantitative tools. The results show that the trajectories are mainly characterized by coherent integrative responses that operate at the global cellular scale. These systemic migratory movements depend on the cooperative nonlinear interaction of most, if not all, molecular components of cells.
定向运动是细胞的一项基本特性。尽管它在许多基本生理和病理过程中具有极其重要的意义,但细胞如何控制其运动仍然是一个未解决的问题。在这里,我们研究了驱动细胞定向运动的系统过程。具体而言,我们进行了一项详尽的研究,分析了属于三种不同物种(此处原文缺失物种名称)的700个单个细胞在四种不同情况下的轨迹:无刺激时、在电场下(趋电运动)、在趋化梯度中(趋化运动)以及在同时存在趋电和趋化刺激的情况下。所有运动均使用先进的定量工具进行分析。结果表明,这些轨迹主要以在全局细胞尺度上起作用的连贯整合反应为特征。这些系统性迁移运动依赖于细胞中大多数(如果不是全部)分子成分的协同非线性相互作用。