Suppr超能文献

赖斯凯非血红素铁双加氧酶将氧活化与芳香族化合物羟基化的底物特异性偶联

Substrate-Specific Coupling of O Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases.

作者信息

Pati Sarah G, Bopp Charlotte E, Kohler Hans-Peter E, Hofstetter Thomas B

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.

Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland.

出版信息

ACS Catal. 2022 Jun 3;12(11):6444-6456. doi: 10.1021/acscatal.2c00383. Epub 2022 May 16.

Abstract

Rieske dioxygenases catalyze the initial steps in the hydroxylation of aromatic compounds and are critical for the metabolism of xenobiotic substances. Because substrates do not bind to the mononuclear non-heme Fe center, elementary steps leading to O activation and substrate hydroxylation are difficult to delineate, thus making it challenging to rationalize divergent observations on enzyme mechanisms, reactivity, and substrate specificity. Here, we show for nitrobenzene dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes to nitrite and substituted catechols, that unproductive O activation with the release of the unreacted substrate and reactive oxygen species represents an important path in the catalytic cycle. Through correlation of O uncoupling for a series of substituted nitroaromatic compounds with O and C kinetic isotope effects of dissolved O and aromatic substrates, respectively, we show that O uncoupling occurs after the rate-limiting formation of Fe-(hydro)peroxo species from which substrates are hydroxylated. Substituent effects on the extent of O uncoupling suggest that the positioning of the substrate in the active site rather than the susceptibility of the substrate for attack by electrophilic oxygen species is responsible for unproductive O uncoupling. The proposed catalytic cycle provides a mechanistic basis for assessing the very different efficiencies of substrate hydroxylation vs unproductive O activation and generation of reactive oxygen species in reactions catalyzed by Rieske dioxygenases.

摘要

Rieske双加氧酶催化芳香族化合物羟基化的起始步骤,对异生物质的代谢至关重要。由于底物不与单核非血红素铁中心结合,导致氧活化和底物羟基化的基本步骤难以界定,因此难以对关于酶机制、反应性和底物特异性的不同观察结果作出合理解释。在此,我们以硝基苯双加氧酶为例,该酶是一种能够将硝基芳烃转化为亚硝酸盐和取代儿茶酚的Rieske双加氧酶,我们发现未反应底物和活性氧的释放所导致的无效氧活化是催化循环中的一条重要途径。通过将一系列取代硝基芳烃化合物的氧解偶联分别与溶解氧和芳香底物的氧及碳动力学同位素效应相关联,我们表明氧解偶联发生在铁 - (氢)过氧物种形成的限速步骤之后,底物由此被羟基化。取代基对氧解偶联程度的影响表明,底物在活性位点的定位而非底物被亲电氧物种攻击的敏感性是导致无效氧解偶联的原因。所提出的催化循环为评估Rieske双加氧酶催化反应中底物羟基化与无效氧活化及活性氧生成的截然不同的效率提供了一个机制基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/9171724/471234dd5576/cs2c00383_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验