Suppr超能文献

利用决策树模型和全州范围的综合数据预测囚犯出狱后的阿片类药物过量情况。

Using decision tree models and comprehensive statewide data to predict opioid overdoses following prison release.

机构信息

University of Colorado School of Medicine, Division of General Internal Medicine, Aurora, CO, USA.

Boston University School of Public Health, Boston, MA, USA.

出版信息

Ann Epidemiol. 2024 Jun;94:81-90. doi: 10.1016/j.annepidem.2024.04.011. Epub 2024 May 6.

Abstract

PURPOSE

Identifying predictors of opioid overdose following release from prison is critical for opioid overdose prevention.

METHODS

We leveraged an individually linked, state-wide database from 2015-2020 to predict the risk of opioid overdose within 90 days of release from Massachusetts state prisons. We developed two decision tree modeling schemes: a model fit on all individuals with a single weight for those that experienced an opioid overdose and models stratified by race/ethnicity. We compared the performance of each model using several performance measures and identified factors that were most predictive of opioid overdose within racial/ethnic groups and across models.

RESULTS

We found that out of 44,246 prison releases in Massachusetts between 2015-2020, 2237 (5.1%) resulted in opioid overdose in the 90 days following release. The performance of the two predictive models varied. The single weight model had high sensitivity (79%) and low specificity (56%) for predicting opioid overdose and was more sensitive for White non-Hispanic individuals (sensitivity = 84%) than for racial/ethnic minority individuals.

CONCLUSIONS

Stratified models had better balanced performance metrics for both White non-Hispanic and racial/ethnic minority groups and identified different predictors of overdose between racial/ethnic groups. Across racial/ethnic groups and models, involuntary commitment (involuntary treatment for alcohol/substance use disorder) was an important predictor of opioid overdose.

摘要

目的

确定从监狱获释后阿片类药物过量的预测因素对于预防阿片类药物过量至关重要。

方法

我们利用 2015 年至 2020 年来自全州的个人关联数据库,预测马萨诸塞州监狱获释后 90 天内阿片类药物过量的风险。我们开发了两种决策树建模方案:一种模型适用于所有经历过阿片类药物过量的个体,对于那些经历过阿片类药物过量的个体使用单一权重;另一种按种族/族裔分层的模型。我们使用多种性能指标比较了每个模型的性能,并确定了在种族/族裔群体内和跨模型中最能预测阿片类药物过量的因素。

结果

我们发现,在 2015 年至 2020 年期间,马萨诸塞州有 44246 名囚犯出狱,其中 2237 人(5.1%)在出狱后 90 天内发生阿片类药物过量。两种预测模型的性能有所不同。单一权重模型对预测阿片类药物过量具有较高的敏感性(79%)和较低的特异性(56%),对于白人非西班牙裔个体(敏感性=84%)比对于种族/族裔少数群体个体更敏感。

结论

分层模型在白人和种族/族裔少数群体的性能指标上具有更好的平衡性,并且确定了种族/族裔群体之间阿片类药物过量的不同预测因素。在种族/族裔群体和模型中,非自愿住院治疗(酒精/药物使用障碍的强制性治疗)是阿片类药物过量的一个重要预测因素。

相似文献

1
Using decision tree models and comprehensive statewide data to predict opioid overdoses following prison release.
Ann Epidemiol. 2024 Jun;94:81-90. doi: 10.1016/j.annepidem.2024.04.011. Epub 2024 May 6.
2
Racial/ethnic trends in opioid and polysubstance opioid overdose mortality in adolescents and young adults, 1999-2020.
Addict Behav. 2024 Sep;156:108065. doi: 10.1016/j.addbeh.2024.108065. Epub 2024 May 16.
5
Racial/ethnic differences in opioid-involved overdose deaths across metropolitan and non-metropolitan areas in the United States, 1999-2017.
Drug Alcohol Depend. 2020 Jul 1;212:108059. doi: 10.1016/j.drugalcdep.2020.108059. Epub 2020 May 13.
6
Evaluating equity in community-based naloxone access among racial/ethnic groups in Massachusetts.
Drug Alcohol Depend. 2022 Dec 1;241:109668. doi: 10.1016/j.drugalcdep.2022.109668. Epub 2022 Oct 20.
7
Prison Buprenorphine Implementation and Postrelease Opioid Use Disorder Outcomes.
JAMA Netw Open. 2024 Mar 4;7(3):e242732. doi: 10.1001/jamanetworkopen.2024.2732.
10
Rates of Opioid Overdose Among Racial and Ethnic Minority Individuals Released From Prison.
JAMA Health Forum. 2023 Dec 1;4(12):e234455. doi: 10.1001/jamahealthforum.2023.4455.

引用本文的文献

1
A chain of survival for drug overdose.
Resusc Plus. 2025 Jul 8;25:101026. doi: 10.1016/j.resplu.2025.101026. eCollection 2025 Sep.

本文引用的文献

1
2
The Risk of Coding Racism into Pediatric Sepsis Care: The Necessity of Antiracism in Machine Learning.
J Pediatr. 2022 Aug;247:129-132. doi: 10.1016/j.jpeds.2022.04.024. Epub 2022 Apr 22.
3
Identifying Predictors of Opioid Overdose Death at a Neighborhood Level With Machine Learning.
Am J Epidemiol. 2022 Feb 19;191(3):526-533. doi: 10.1093/aje/kwab279.
4
Factors associated with opioid-involved overdose among previously incarcerated people in the U.S.: A community engaged narrative review.
Int J Drug Policy. 2022 Feb;100:103534. doi: 10.1016/j.drugpo.2021.103534. Epub 2021 Dec 9.
5
The impact of the opioid crisis on U.S. state prison systems.
Health Justice. 2021 Jul 24;9(1):17. doi: 10.1186/s40352-021-00143-9.
6
Opioid-related incident severity and emergency medical service naloxone administration by sex in Massachusetts, 2013-2019.
Subst Abus. 2022;43(1):479-485. doi: 10.1080/08897077.2021.1949661. Epub 2021 Jul 20.
8
Machine Learning Based Opioid Overdose Prediction Using Electronic Health Records.
AMIA Annu Symp Proc. 2020 Mar 4;2019:389-398. eCollection 2019.
10
Factors associated with help seeking by community responders trained in overdose prevention and naloxone administration in Massachusetts.
Drug Alcohol Depend. 2019 Nov 1;204:107531. doi: 10.1016/j.drugalcdep.2019.06.033. Epub 2019 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验