Dong Xinyu, Rashidian Sina, Wang Yu, Hajagos Janos, Zhao Xia, Rosenthal Richard N, Kong Jun, Saltz Mary, Saltz Joel, Wang Fusheng
Stony Brook University, Stony Brook, NY.
AMIA Annu Symp Proc. 2020 Mar 4;2019:389-398. eCollection 2019.
Opioid addiction in the United States has come to national attention as opioid overdose (OD) related deaths have risen at alarming rates. Combating opioid epidemic becomes a high priority for not only governments but also healthcare providers. This depends on critical knowledge to understand the risk of opioid overdose of patients. In this paper, we present our work on building machine learning based prediction models to predict opioid overdose of patients based on the history of patients' electronic health records (EHR). We performed two studies using New York State claims data (SPARCS) with 440,000 patients and Cerner's Health Facts database with 110,000 patients. Our experiments demonstrated that EHR based prediction can achieve best recall with random forest method (precision: 95.3%, recall: 85.7%, F1 score: 90.3%), best precision with deep learning (precision: 99.2%, recall: 77.8%, F1 score: 87.2%). We also discovered that clinical events are among critical features for the predictions.
随着与阿片类药物过量(OD)相关的死亡人数以惊人的速度上升,美国的阿片类药物成瘾问题已引起全国关注。对抗阿片类药物流行不仅成为政府的高度优先事项,也是医疗保健提供者的高度优先事项。这取决于了解患者阿片类药物过量风险的关键知识。在本文中,我们展示了我们基于机器学习构建预测模型的工作,该模型基于患者电子健康记录(EHR)的历史数据来预测患者的阿片类药物过量情况。我们使用了纽约州索赔数据(SPARCS)中的440,000名患者以及Cerner的健康事实数据库中的110,000名患者进行了两项研究。我们的实验表明,基于EHR的预测使用随机森林方法可以实现最佳召回率(精确率:95.3%,召回率:85.7%,F1分数:90.3%),使用深度学习可以实现最佳精确率(精确率:99.2%,召回率:77.8%,F1分数:87.2%)。我们还发现临床事件是预测的关键特征之一。