Suppr超能文献

基于机器学习利用电子健康记录进行阿片类药物过量预测

Machine Learning Based Opioid Overdose Prediction Using Electronic Health Records.

作者信息

Dong Xinyu, Rashidian Sina, Wang Yu, Hajagos Janos, Zhao Xia, Rosenthal Richard N, Kong Jun, Saltz Mary, Saltz Joel, Wang Fusheng

机构信息

Stony Brook University, Stony Brook, NY.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:389-398. eCollection 2019.

Abstract

Opioid addiction in the United States has come to national attention as opioid overdose (OD) related deaths have risen at alarming rates. Combating opioid epidemic becomes a high priority for not only governments but also healthcare providers. This depends on critical knowledge to understand the risk of opioid overdose of patients. In this paper, we present our work on building machine learning based prediction models to predict opioid overdose of patients based on the history of patients' electronic health records (EHR). We performed two studies using New York State claims data (SPARCS) with 440,000 patients and Cerner's Health Facts database with 110,000 patients. Our experiments demonstrated that EHR based prediction can achieve best recall with random forest method (precision: 95.3%, recall: 85.7%, F1 score: 90.3%), best precision with deep learning (precision: 99.2%, recall: 77.8%, F1 score: 87.2%). We also discovered that clinical events are among critical features for the predictions.

摘要

随着与阿片类药物过量(OD)相关的死亡人数以惊人的速度上升,美国的阿片类药物成瘾问题已引起全国关注。对抗阿片类药物流行不仅成为政府的高度优先事项,也是医疗保健提供者的高度优先事项。这取决于了解患者阿片类药物过量风险的关键知识。在本文中,我们展示了我们基于机器学习构建预测模型的工作,该模型基于患者电子健康记录(EHR)的历史数据来预测患者的阿片类药物过量情况。我们使用了纽约州索赔数据(SPARCS)中的440,000名患者以及Cerner的健康事实数据库中的110,000名患者进行了两项研究。我们的实验表明,基于EHR的预测使用随机森林方法可以实现最佳召回率(精确率:95.3%,召回率:85.7%,F1分数:90.3%),使用深度学习可以实现最佳精确率(精确率:99.2%,召回率:77.8%,F1分数:87.2%)。我们还发现临床事件是预测的关键特征之一。

相似文献

8
Machine learning for phenotyping opioid overdose events.机器学习在阿片类药物过量表型中的应用。
J Biomed Inform. 2019 Jun;94:103185. doi: 10.1016/j.jbi.2019.103185. Epub 2019 Apr 25.

引用本文的文献

本文引用的文献

5
Deep Learning in Medicine-Promise, Progress, and Challenges.医学中的深度学习——前景、进展与挑战
JAMA Intern Med. 2019 Mar 1;179(3):293-294. doi: 10.1001/jamainternmed.2018.7117.
6
Improving palliative care with deep learning.利用深度学习改善姑息治疗。
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):122. doi: 10.1186/s12911-018-0677-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验