Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
J Mater Chem B. 2024 May 29;12(21):5024-5038. doi: 10.1039/d3tb02958a.
Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS, UCNPs-MoS nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS nanocomposites for biological applications are also discussed.
复合材料可以比单一纳米材料更充分地利用多种纯纳米材料的功能优势。上转换纳米颗粒-二硫化钼复合材料(UCNPs-MoS)是一个纳米应用平台,结合了上转换发光和光热性能。上转换纳米颗粒(UCNPs)是一种具有长波长激发和短波长可调谐发射能力的无机纳米材料,能够有效地将近红外(NIR)光转化为可见光,从而提高光稳定性。然而,UCNPs 对可见光的吸收能力较低,而 MoS 在紫外和可见光区域的吸收能力更好。通过整合 UCNPs 和 MoS 的优势,UCNPs-MoS 纳米复合材料可以将具有更高检测深度的 NIR 光转化为可见光,通过荧光共振能量转移(FRET)应用于 MoS,从而弥补 MoS 吸收波长的组织穿透深度低的问题,并扩展其潜在的生物应用。因此,从 UCNPs-MoS 纳米平台的构建出发,本文综述了其在生物应用中的研究进展,包括生物传感、光疗、生物成像和靶向药物传递。此外,还讨论了 UCNPs-MoS 纳米复合材料在生物应用中的当前挑战和未来发展趋势。