Song Jinze, Liu Wenxin, Yang Li, Sun Xiao, Xie Liangliang, Li Jiawei, Xu Ling, Dong Alideertu
College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China.
Department of Functional Laboratory, Tongliao People's Hospital, Tongliao, 028000, P. R. China.
Adv Healthc Mater. 2025 Jul;14(18):e2500987. doi: 10.1002/adhm.202500987. Epub 2025 May 20.
The increasing severity of antibiotic resistance and the delayed healing of infected wounds have triggered an arduous challenge that threatens human health. Instantly, quiet a few novel, efficient, and safe antibacterial strategies are urgently needed to be explored. In this study, a NIR-activated antibacterial nanocomposite (RB/UCNPs@BP) integrating rose bengal-sensitized upconversion nanoparticles (RB/UCNPs) and black phosphorus (BP) is developed for promoting infection wound healing. The photodynamic therapy (PDT) and photothermal therapy (PTT) are employed here for synergistic antibacterial action, while UCNPs further improve the penetration depth of irradiation and treatment efficiency. More importantly, the typical biodegradability of BP confers reduced resistance on nanocomposites through residual-free antimicrobial methods. The results show that RB/UCNPs@BP significantly inhibits the growth of both Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) via enhanced PDT and PTT. Besides, the infected wounds achieve better healing by accelerating fibroblast proliferation and migration, reducing inflammatory cell infiltration, and promoting neuronal regeneration and angiogenesis. This study provides a promising and anti-resistant strategy with light-triggered antibacterial and anti-inflammatory activities that can promote the regeneration of infected skin tissue.
抗生素耐药性的日益严重以及感染伤口愈合延迟引发了一项威胁人类健康的艰巨挑战。当下,迫切需要探索一些新颖、高效且安全的抗菌策略。在本研究中,一种整合了孟加拉玫瑰红敏化上转换纳米颗粒(RB/UCNPs)和黑磷(BP)的近红外激活抗菌纳米复合材料(RB/UCNPs@BP)被开发用于促进感染伤口愈合。此处采用光动力疗法(PDT)和光热疗法(PTT)进行协同抗菌作用,而上转换纳米颗粒进一步提高了照射的穿透深度和治疗效率。更重要的是,BP典型的生物可降解性通过无残留抗菌方法降低了纳米复合材料的耐药性。结果表明,RB/UCNPs@BP通过增强的PDT和PTT显著抑制大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的生长。此外,感染伤口通过加速成纤维细胞增殖和迁移、减少炎症细胞浸润以及促进神经元再生和血管生成实现了更好的愈合。本研究提供了一种具有光触发抗菌和抗炎活性的有前景的抗耐药策略,可促进感染皮肤组织的再生。