Suppr超能文献

利用多层感知器——人工神经网络模型,结合实测和预测的水文气象数据,预测 Gibe-III 水库的泥沙淤积。

Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia.

机构信息

Faculty of Meteorology and Hydrology, Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia.

Department of Earth and Environment, Florida International University, Miami, FL, 33199, USA.

出版信息

J Environ Manage. 2024 May;359:121018. doi: 10.1016/j.jenvman.2024.121018. Epub 2024 May 6.

Abstract

The estimation and prediction of the amount of sediment accumulated in reservoirs are imperative for sustainable reservoir sedimentation planning and management and to minimize reservoir storage capacity loss. The main objective of this study was to estimate and predict reservoir sedimentation using multilayer perceptron-artificial neural network (MLP-ANN) and random forest regressor (RFR) models in the Gibe-III reservoir, Omo-Gibe River basin. The hydrological and meteorological parameters considered for the estimation and prediction of reservoir sedimentation include annual rainfall, annual water inflow, minimum reservoir level, and reservoir storage capacity. The MLP-ANN and RFR models were employed to estimate and predict the amount of sediment accumulated in the Gibe-III reservoir using time series data from 2014 to 2022. ANN-architecture N4-100-100-1 with a coefficient of determination (R) of 0.97 for the (80, 20) train-test approach was chosen because it showed better performance both in training and testing (validation) the model. The MLP-ANN and RFR models' performance evaluation was conducted using MAE, MSE, RMSE, and R. The models' evaluation result revealed that the MLP-ANN model outperformed the RFR model. Regarding the train data simulation of MLP-ANN and RFR shown R (0.99) and RMSE (0.77); and R (0.97) and RMSE (1.80), respectively. On the other hand, the test data simulation of MLP-ANN and RFR demonstrated R (0.98) and RMSE (1.32); and R (0.96) and RMSE (2.64), respectively. The MLP-ANN model simulation output indicates that the amount of sediment accumulation in the Gibe-III reservoir will increase in the future, reaching 110 MT in 2030-2031, 130 MT in 2050-2051, and above 137 MTin 2071-2072.

摘要

估算和预测水库中的泥沙淤积量对于可持续的水库淤积规划和管理以及最小化水库库容损失至关重要。本研究的主要目的是使用多层感知机-人工神经网络(MLP-ANN)和随机森林回归器(RFR)模型估算和预测奥莫-吉贝河流域吉贝 III 水库的泥沙淤积量。用于估算和预测水库泥沙淤积量的水文和气象参数包括年降雨量、年径流量、最低水库水位和水库库容。使用 2014 年至 2022 年的时间序列数据,分别采用 MLP-ANN 和 RFR 模型来估算和预测吉贝 III 水库的泥沙淤积量。选择 ANN-architecture N4-100-100-1 与(80,20)训练-测试方法的决定系数(R)为 0.97,因为它在训练和测试(验证)模型方面都表现出更好的性能。通过 MAE、MSE、RMSE 和 R 对 MLP-ANN 和 RFR 模型的性能进行评估。模型的评估结果表明,MLP-ANN 模型的性能优于 RFR 模型。关于 MLP-ANN 和 RFR 的训练数据模拟,结果分别为 R(0.99)和 RMSE(0.77);R(0.97)和 RMSE(1.80)。另一方面,关于 MLP-ANN 和 RFR 的测试数据模拟,结果分别为 R(0.98)和 RMSE(1.32);R(0.96)和 RMSE(2.64)。MLP-ANN 模型的模拟输出表明,吉贝 III 水库的泥沙淤积量将在未来增加,到 2030-2031 年将达到 110MT,到 2050-2051 年将达到 130MT,到 2071-2072 年将超过 137MT。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验