Suppr超能文献

将概念和机器学习模型相结合,以提高日尺度流域流量模拟,并评估印度戈达瓦里河流域气候变化的影响。

Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.

机构信息

Dept. of Civil Engineering, National Institute of Technology, Tiruchirappalli, India.

Center of Excellence in Interdisciplinary Research for Sustainable Development, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

出版信息

Environ Res. 2024 Jun 1;250:118403. doi: 10.1016/j.envres.2024.118403. Epub 2024 Feb 14.

Abstract

This study examined and addressed climate change's effects on hydrological patterns, particularly in critical places like the Godavari River basin. This study used daily gridded rainfall and temperature datasets from the Indian Meteorological Department (IMD) for model training and testing, 70% and 30%, respectively. To anticipate future hydrological shifts, the study harnessed the EC-Earth3 data, presenting an innovative methodology tailored to the unique hydrological dynamics of the Godavari River basin. The Sacramento model provided initial streamflow estimates for Kanhargaon, Nowrangpur, and Wairagarh. This approach melded traditional hydrological modeling with advanced multi-layer perceptron (MLP) capabilities. When combined with parameters like lagged rainfall, lagged streamflow, potential evapotranspiration (PET), and temperature variations, these initial outputs were further refined using the Sac-MLP model. A comparison with Sacramento revealed the superior performance of the Sac-MLP model. For instance, during training, the Nash Sutcliffe efficiency (NSE) values for the Sac-MLP witnessed an improvement from 0.610 to 0.810 in Kanhargaon, 0.580 to 0.692 in Nowrangpur, and 0.675 to 0.849 in Wairagarh. The results of the testing further corroborated these findings, as evidenced by the increase in the NSE for Kanhargaon from 0.890 to 0.910. Additionally, Nowrangpur and Wairagarh experienced notable improvements, with their NSE values rising from 0.629 to 0.785 and 0.725 to 0.902, respectively. Projections based on EC-Earth3 data across various scenarios highlighted significant shifts in rainfall and temperature patterns, especially in the far future (2071-2100). Regarding the relative change in annual streamflow, Kanhargaon projections under SSP370 and SSP585 for the far future indicate increases of 584.38% and 662.74%. Similarly, Nowrangpur and Wairagarh are projected to see increases of 98.27% and 114.98%, and 81.68% and 108.08%, respectively. This study uses EC-Earth3 estimates to demonstrate the Sac-MLP model's accuracy and importance in climate change water resource planning. The unique method for region-specific hydrological analysis provides vital insights for sustainable water resource management. This research provides a deeper understanding of climate-induced hydrological changes and a robust modeling approach for accurate predictions in changing environmental conditions.

摘要

本研究考察并探讨了气候变化对水文模式的影响,特别是在戈达瓦里河流域等关键地区。本研究使用印度气象局(IMD)的每日网格化降雨和温度数据集进行模型训练和测试,分别占 70%和 30%。为了预测未来的水文变化,该研究利用了 EC-Earth3 数据,提出了一种针对戈达瓦里河流域独特水文动态的创新方法。萨克拉门托模型为坎哈冈、诺兰普尔和怀拉格尔提供了初始的河流流量估计。该方法将传统的水文建模与先进的多层感知器(MLP)能力相结合。当与滞后降雨、滞后河流流量、潜在蒸散量(PET)和温度变化等参数结合使用时,使用 Sac-MLP 模型进一步细化这些初始输出。与萨克拉门托的比较显示了 Sac-MLP 模型的优越性能。例如,在训练过程中,Sac-MLP 的纳什-苏特克里夫效率(NSE)值在坎哈冈从 0.610 提高到 0.810,在诺兰普尔从 0.580 提高到 0.692,在怀拉格尔从 0.675 提高到 0.849。测试结果进一步证实了这些发现,坎哈冈的 NSE 从 0.890 增加到 0.910 证明了这一点。此外,诺兰普尔和怀拉格尔的 NSE 值也有显著提高,分别从 0.629 提高到 0.785 和 0.725 提高到 0.902。基于 EC-Earth3 数据的各种情景预测突出了降雨和温度模式的重大变化,特别是在遥远的未来(2071-2100 年)。关于年度河流流量的相对变化,在遥远的未来,SSP370 和 SSP585 下的坎哈冈预测显示增长了 584.38%和 662.74%。同样,诺兰普尔和怀拉格尔的增长预计分别为 98.27%和 114.98%和 81.68%和 108.08%。本研究使用 EC-Earth3 估计值来展示 Sac-MLP 模型在气候变化水资源规划中的准确性和重要性。针对特定区域的水文分析的独特方法为可持续水资源管理提供了重要的见解。本研究提供了对气候引起的水文变化的更深入理解和对变化环境条件下准确预测的强大建模方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验