Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
Nat Commun. 2024 May 7;15(1):3827. doi: 10.1038/s41467-024-48109-3.
The main protease (M) of SARS-CoV-2 is critical for viral function and a key drug target. M is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized M showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. M forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized M spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of M and the crystallization conditions necessary to study this structurally.
SARS-CoV-2 的主要蛋白酶 (M) 对病毒功能至关重要,是关键的药物靶点。只有还原状态下 M 才具有活性;氧化后会停止周转,但通过再还原可恢复。这表明该系统已经进化到能够在氧化环境中生存一段时间,但这种保护的机制尚未得到证实。在这里,我们报告了一个氧化 M 的晶体结构,显示活性位点半胱氨酸 C145 与远端半胱氨酸 C117 之间存在二硫键。先前的工作提出,这种二硫键提供了防止不可逆氧化的机制。M 形成必需的同源二聚体,C117-C145 结构显示桥接二聚体界面的相互作用被破坏,暗示氧化和二聚化之间存在相关性。我们证实氧化后溶液中二聚体稳定性减弱。最后,我们观察到蛋白质的结晶行为与其氧化还原状态有关。氧化 M 自发形成一种独特的、更松散的晶格。用这种晶格的晶体进行接种会产生一种结构,其中包含一个半胱氨酸-赖氨酸-半胱氨酸 (SONOS) 和两个赖氨酸-半胱氨酸 (NOS) 桥。这些结构进一步加深了我们对 M 的氧化调控以及研究这种结构所需的结晶条件的理解。