Suppr超能文献

利用机器学习促进后循环卒中的早期诊断。

Utilizing machine learning to facilitate the early diagnosis of posterior circulation stroke.

机构信息

Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar.

Neurology Section, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar.

出版信息

BMC Neurol. 2024 May 7;24(1):156. doi: 10.1186/s12883-024-03638-8.

Abstract

BACKGROUND

Posterior Circulation Syndrome (PCS) presents a diagnostic challenge characterized by its variable and nonspecific symptoms. Timely and accurate diagnosis is crucial for improving patient outcomes. This study aims to enhance the early diagnosis of PCS by employing clinical and demographic data and machine learning. This approach targets a significant research gap in the field of stroke diagnosis and management.

METHODS

We collected and analyzed data from a large national Stroke Registry spanning from January 2014 to July 2022. The dataset included 15,859 adult patients admitted with a primary diagnosis of stroke. Five machine learning models were trained: XGBoost, Random Forest, Support Vector Machine, Classification and Regression Trees, and Logistic Regression. Multiple performance metrics, such as accuracy, precision, recall, F1-score, AUC, Matthew's correlation coefficient, log loss, and Brier score, were utilized to evaluate model performance.

RESULTS

The XGBoost model emerged as the top performer with an AUC of 0.81, accuracy of 0.79, precision of 0.5, recall of 0.62, and F1-score of 0.55. SHAP (SHapley Additive exPlanations) analysis identified key variables associated with PCS, including Body Mass Index, Random Blood Sugar, ataxia, dysarthria, and diastolic blood pressure and body temperature. These variables played a significant role in facilitating the early diagnosis of PCS, emphasizing their diagnostic value.

CONCLUSION

This study pioneers the use of clinical data and machine learning models to facilitate the early diagnosis of PCS, filling a crucial gap in stroke research. Using simple clinical metrics such as BMI, RBS, ataxia, dysarthria, DBP, and body temperature will help clinicians diagnose PCS early. Despite limitations, such as data biases and regional specificity, our research contributes to advancing PCS understanding, potentially enhancing clinical decision-making and patient outcomes early in the patient's clinical journey. Further investigations are warranted to elucidate the underlying physiological mechanisms and validate these findings in broader populations and healthcare settings.

摘要

背景

后循环综合征(PCS)表现出诊断上的挑战,其症状具有多变性和非特异性。及时准确的诊断对于改善患者的预后至关重要。本研究旨在通过临床和人口统计学数据以及机器学习来提高 PCS 的早期诊断能力。这一方法针对的是中风诊断和管理领域的一个重要研究空白。

方法

我们从 2014 年 1 月至 2022 年 7 月的一个大型国家中风登记处收集和分析了数据。该数据集包括 15859 名成年患者,他们的主要诊断为中风。我们训练了五个机器学习模型:XGBoost、随机森林、支持向量机、分类回归树和逻辑回归。我们使用了多种性能指标,如准确率、精度、召回率、F1 分数、AUC、马修相关系数、对数损失和 Brier 得分,来评估模型的性能。

结果

XGBoost 模型表现最佳,其 AUC 为 0.81,准确率为 0.79,精度为 0.5,召回率为 0.62,F1 得分为 0.55。SHAP(SHapley Additive exPlanations)分析确定了与 PCS 相关的关键变量,包括体重指数、随机血糖、共济失调、构音障碍、舒张压和体温。这些变量在促进 PCS 的早期诊断方面发挥了重要作用,强调了它们的诊断价值。

结论

本研究率先使用临床数据和机器学习模型来促进 PCS 的早期诊断,填补了中风研究中的一个关键空白。使用 BMI、RBS、共济失调、构音障碍、DBP 和体温等简单的临床指标将有助于临床医生早期诊断 PCS。尽管存在数据偏差和区域特异性等限制,但我们的研究有助于推进对 PCS 的理解,有可能在患者的临床旅程早期改善临床决策和患者预后。需要进一步的研究来阐明潜在的生理机制,并在更广泛的人群和医疗保健环境中验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932a/11075305/2bb3ce1bb26e/12883_2024_3638_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验