Abujaber Ahmad A, Albalkhi Ibrahem, Imam Yahia, Nashwan Abdulqadir J, Yaseen Said, Akhtar Naveed, Alkhawaldeh Ibraheem M
Nursing Department, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
J Pers Med. 2023 Oct 30;13(11):1555. doi: 10.3390/jpm13111555.
(1) Objective: This study aimed to construct a machine learning model for predicting the prognosis of ischemic stroke patients who underwent thrombolysis, assessed through the modified Rankin Scale (mRS) score 90 days after discharge. (2) Methods: Data were sourced from Qatar's stroke registry covering January 2014 to June 2022. A total of 723 patients with ischemic stroke who had received thrombolysis were included. Clinical variables were examined, encompassing demographics, stroke severity indices, comorbidities, laboratory results, admission vital signs, and hospital-acquired complications. The predictive capabilities of five distinct machine learning models were rigorously evaluated using a comprehensive set of metrics. The SHAP analysis was deployed to uncover the most influential predictors. (3) Results: The Support Vector Machine (SVM) model emerged as the standout performer, achieving an area under the curve (AUC) of 0.72. Key determinants of patient outcomes included stroke severity at admission; admission systolic and diastolic blood pressure; baseline comorbidities, notably hypertension (HTN) and coronary artery disease (CAD); stroke subtype, particularly strokes of undetermined origin (SUO); and hospital-acquired urinary tract infections (UTIs). (4) Conclusions: Machine learning can improve early prognosis prediction in ischemic stroke, especially after thrombolysis. The SVM model is a promising tool for empowering clinicians to create individualized treatment plans. Despite limitations, this study contributes to our knowledge and encourages future research to integrate more comprehensive data. Ultimately, it offers a pathway to improve personalized stroke care and enhance the quality of life for stroke survivors.
(1) 目的:本研究旨在构建一个机器学习模型,用于预测接受溶栓治疗的缺血性中风患者出院90天后通过改良Rankin量表(mRS)评分评估的预后情况。(2) 方法:数据来源于卡塔尔2014年1月至2022年6月的中风登记处。共纳入723例接受过溶栓治疗的缺血性中风患者。检查了临床变量,包括人口统计学、中风严重程度指数、合并症、实验室检查结果、入院生命体征和医院获得性并发症。使用一套全面的指标对五个不同的机器学习模型的预测能力进行了严格评估。采用SHAP分析来找出最具影响力的预测因素。(3) 结果:支持向量机(SVM)模型表现最为突出,曲线下面积(AUC)达到0.72。患者预后的关键决定因素包括入院时的中风严重程度;入院时的收缩压和舒张压;基线合并症,尤其是高血压(HTN)和冠状动脉疾病(CAD);中风亚型,特别是不明原因的中风(SUO);以及医院获得性尿路感染(UTIs)。(4) 结论:机器学习可以改善缺血性中风的早期预后预测,尤其是在溶栓治疗后。SVM模型是帮助临床医生制定个性化治疗方案的一个有前景的工具。尽管存在局限性,但本研究为我们的知识体系做出了贡献,并鼓励未来的研究整合更全面的数据。最终,它提供了一条改善个性化中风护理和提高中风幸存者生活质量的途径。