Suppr超能文献

基于调整后的发病群体预测医疗保健支出,以实施基于需求的按人头付费融资系统。

Predicting healthcare expenditure based on Adjusted Morbidity Groups to implement a needs-based capitation financing system.

作者信息

Martínez-Pérez Jorge-Eduardo, Quesada-Torres Juan-Antonio, Martínez-Gabaldón Eduardo

机构信息

Department of Applied Economics, University of Murcia, Campus of Espinardo, Murcia, 30100, Spain.

Department of Health of the Region of Murcia, 4 Pinares Street, Murcia, 30001, Spain.

出版信息

Health Econ Rev. 2024 May 8;14(1):33. doi: 10.1186/s13561-024-00508-4.

Abstract

BACKGROUND

Due to population aging, healthcare expenditure is projected to increase substantially in developed countries like Spain. However, prior research indicates that health status, not merely age, is a key driver of healthcare costs. This study analyzed data from over 1.25 million residents of Spain's Murcia region to develop a capitation-based healthcare financing model incorporating health status via Adjusted Morbidity Groups (AMGs). The goal was to simulate an equitable area-based healthcare budget allocation reflecting population needs.

METHODS

Using 2017 data on residents' age, sex, AMG designation, and individual healthcare costs, generalized linear models were built to predict healthcare expenditure based on health status indicators. Multiple link functions and distribution families were tested, with model selection guided by information criteria, residual analysis, and goodness-of-fit statistics. The selected model was used to estimate adjusted populations and simulate capitated budgets for the 9 healthcare districts in Murcia.

RESULTS

The gamma distribution with logarithmic link function provided the best model fit. Comparisons of predicted and actual average costs revealed underfunded and overfunded areas within Murcia. If implemented, the capitation model would decrease funding for most districts (up to 15.5%) while increasing it for two high-need areas, emphasizing allocation based on health status and standardized utilization rather than historical spending alone.

CONCLUSIONS

AMG-based capitated budgeting could improve equity in healthcare financing across regions in Spain. By explicitly incorporating multimorbidity burden into allocation formulas, resources can be reallocated towards areas with poorer overall population health. Further policy analysis and adjustment is needed before full-scale implementation of such need-based global budgets.

摘要

背景

由于人口老龄化,预计在西班牙等发达国家医疗保健支出将大幅增加。然而,先前的研究表明,健康状况而非仅仅年龄是医疗成本的关键驱动因素。本研究分析了来自西班牙穆尔西亚地区超过125万居民的数据,以开发一种基于人头费的医疗保健融资模式,该模式通过调整后的发病组(AMG)纳入健康状况。目标是模拟反映人口需求的公平的基于地区的医疗保健预算分配。

方法

利用2017年居民年龄、性别、AMG指定和个人医疗保健成本的数据,建立广义线性模型,根据健康状况指标预测医疗保健支出。测试了多种链接函数和分布族,模型选择以信息标准、残差分析和拟合优度统计为指导。所选模型用于估计调整后的人口,并模拟穆尔西亚9个医疗区的人头费预算。

结果

对数链接函数的伽马分布提供了最佳的模型拟合。预测平均成本与实际平均成本的比较揭示了穆尔西亚地区资金不足和资金过剩的区域。如果实施,人头费模型将减少大多数地区的资金(高达15.5%),同时增加两个高需求地区的资金,强调基于健康状况和标准化利用而非仅基于历史支出的分配。

结论

基于AMG的人头费预算编制可以改善西班牙各地区医疗保健融资的公平性。通过明确将多重疾病负担纳入分配公式,可以将资源重新分配到总体人口健康较差的地区。在全面实施这种基于需求的全球预算之前,需要进一步的政策分析和调整。

相似文献

3
Predicting healthcare expenditure by multimorbidity groups.预测多病种群组的医疗支出。
Health Policy. 2019 Apr;123(4):427-434. doi: 10.1016/j.healthpol.2019.02.002. Epub 2019 Feb 7.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验