Kübler Alexander M, du Pasquier Cosima, Low Andrew, Djambazi Betim, Aymon Nicolas, Förster Julian, Agharese Nathaniel, Siegwart Roland, Okamura Allison M
CHARM Lab, Department of Mechanical Engineering, Stanford University, Stanford, California, USA.
Autonomous Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
Soft Robot. 2024 Oct;11(5):857-868. doi: 10.1089/soro.2023.0169. Epub 2024 May 7.
Soft pneumatic actuators are used to steer soft growing "vine" robots while being flexible enough to undergo the tip eversion required for growth. In this study, we compared the performance of three types of pneumatic actuators in terms of their ability to perform eversion, quasi-static bending, dynamic motion, and force output: the pouch motor, the cylindrical pneumatic artificial muscle (cPAM), and the fabric pneumatic artificial muscle (fPAM). The pouch motor is advantageous for prototyping owing to its simple manufacturing process. The cPAM exhibits superior bending behavior and produces the highest forces, whereas the fPAM actuates fastest and everts at the lowest pressure. We evaluated a range of dimensions for each actuator type. Larger actuators can produce more significant deformations and forces, but smaller actuators inflate faster and can evert at a lower pressure. Because vine robots are lightweight, the effect of gravity on the functionality of different actuators is minimal. We developed a new analytical model that predicts the pressure-to-bending behavior of vine robot actuators. Using the actuator results, we designed and demonstrated a 4.8 m long vine robot equipped with highly maneuverable 60 × 60 mm cPAMs in a three-dimensional obstacle course. The vine robot was able to move around sharp turns, travel through a passage smaller than its diameter, and lift itself against gravity.
柔软的气动致动器用于操控柔软的、不断生长的“藤蔓”机器人,同时其柔韧性足以承受生长所需的尖端外翻。在本研究中,我们比较了三种气动致动器在进行外翻、准静态弯曲、动态运动和力输出方面的性能:囊式电机、圆柱形气动人工肌肉(cPAM)和织物气动人工肌肉(fPAM)。囊式电机因其简单的制造工艺而有利于原型制作。cPAM表现出卓越的弯曲性能并能产生最大的力,而fPAM的驱动速度最快且能在最低压力下实现外翻。我们评估了每种致动器类型的一系列尺寸。较大的致动器可产生更显著的变形和力,但较小的致动器充气速度更快,且能在较低压力下实现外翻。由于藤蔓机器人重量轻,重力对不同致动器功能的影响极小。我们开发了一种新的分析模型,可预测藤蔓机器人致动器的压力与弯曲行为。利用致动器的测试结果,我们设计并展示了一款4.8米长的藤蔓机器人,它在三维障碍赛道中配备了高度可操控的60×60毫米cPAM。该藤蔓机器人能够急转弯、通过直径小于自身的通道,并克服重力实现自身提升。