Li Jia-Yang, Hu Hai-Yan, Li Hong-Wei, Liu Yi-Feng, Su Yu, Jia Xin-Bei, Zhao Ling-Fei, Fan Ya-Meng, Gu Qin-Fen, Zhang Hang, Pang Wei Kong, Zhu Yan-Fang, Wang Jia-Zhao, Dou Shi-Xue, Chou Shu-Lei, Xiao Yao
Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia.
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
ACS Nano. 2024 May 21;18(20):12945-12956. doi: 10.1021/acsnano.4c00966. Epub 2024 May 8.
P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.
P3层状过渡金属氧化物阴极因其高初始容量、快速的钠动力学以及合成过程中较低的能量消耗而备受关注。尽管具有这些优点,但由于不利的结构转变、锰溶解和迁移导致的大量容量衰减阻碍了它们的实际应用。在本研究中,我们系统地研究了P3阴极的失效机制,包括锰溶解、迁移以及不可逆的P3-O3'相变,最终导致严重的结构坍塌。为应对这些挑战,我们提出了一种界面尖晶石局部互锁策略,利用P3/尖晶石共生氧化物作为概念验证材料。结果,P3/尖晶石共生氧化物阴极表现出增强的循环性能。通过深度蚀刻X射线光电子能谱、X射线吸收光谱以及基于同步加速器的原位X射线衍射验证了抑制锰迁移和维持界面尖晶石局部互锁策略局部结构的有效性。这种界面尖晶石局部互锁工程策略为开发先进的钠离子电池阴极材料提供了一条有前景的途径。