Zhu Yan-Fang, Xiao Yao, Hua Wei-Bo, Indris Sylvio, Dou Shi-Xue, Guo Yu-Guo, Chou Shu-Lei
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia.
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9299-9304. doi: 10.1002/anie.201915650. Epub 2020 Mar 31.
Structural evolution of the cathode during cycling plays a vital role in the electrochemical performance of sodium-ion batteries. A strategy based on engineering the crystal structure coupled with chemical substitution led to the design of the layered P2@P3 integrated spinel oxide cathode Na Ni Co Mn Mg O , which shows excellent sodium-ion half/full battery performance. Combined analyses involving scanning transmission electron microscopy with atomic resolution as well as in situ synchrotron-based X-ray absorption spectra and in situ synchrotron-based X-ray diffraction patterns led to visualization of the inherent layered P2@P3 integrated spinel structure, charge compensation mechanism, structural evolution, and phase transition. This study provides an in-depth understanding of the structure-performance relationship in this structure and opens up a novel field based on manipulating structural evolution for the design of high-performance battery cathodes.
在循环过程中,钠离子电池正极的结构演变对其电化学性能起着至关重要的作用。一种基于晶体结构工程与化学取代相结合的策略,促成了层状P2@P3集成尖晶石氧化物正极NaNiCoMnMgO的设计,该正极展现出优异的钠离子半电池/全电池性能。结合原子分辨率扫描透射电子显微镜、原位同步辐射X射线吸收光谱以及原位同步辐射X射线衍射图谱的综合分析,实现了对固有层状P2@P3集成尖晶石结构、电荷补偿机制、结构演变和相变的可视化。本研究深入理解了该结构中的结构-性能关系,并基于操控结构演变开辟了一个用于设计高性能电池正极的新领域。