Zhang Xianfu, Liu Xuepeng, Ding Yunxuan, Ding Bin, Shi Pengju, Syzgantseva Olga A, Syzgantseva Maria A, Fei Zhaofu, Chen Jianlin, Rahim Ghadari, Han Mingyuan, Zhang Kai, Zhou Ying, Brooks Keith G, Wang Rui, Sun Licheng, Dyson Paul J, Dai Songyuan, Nazeeruddin Mohammad Kahaj Khaja, Ding Yong
Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing, 102206, China.
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
Adv Mater. 2024 Jul;36(28):e2310619. doi: 10.1002/adma.202310619. Epub 2024 May 17.
The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm) and modules (29.0 cm), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.
广泛使用的空穴传输材料(HTM)2,2',7,7'-四(N,N-二对甲氧基苯基氨基)-9,9'-螺二芴(Spiro-OMeTAD)的正交结构赋予其各向同性导电性和优异的成膜能力。然而,其固有的分子内和分子间π-π相互作用较弱,导致本征空穴迁移率较低。在此,设计了一种新型的HTM,称为FTPE-ST,它具有扭曲共轭的二苯并(g,p)chrysene核和共面的3,4-亚乙基二氧噻吩(EDOT)作为扩展供体单元,以增强π-π相互作用,同时不影响溶解性。三维(3D)构型为该材料提供了多方向的电荷传输以及即使在2-甲基苯甲醚中也具有优异的溶解性,并且其大的共轭主链赋予该HTM高的空穴迁移率。此外,EDOT单元中的硫供体与钙钛矿表面的铅离子配位,导致更强的界面相互作用并抑制钙钛矿/HTM界面处的缺陷。结果,采用FTPE-ST的钙钛矿太阳能电池(PSC)实现了25.21%的最佳功率转换效率(PCE),并具有出色的长期稳定性,这是n-i-p PSC中非螺环HTM的最高PCE之一。此外,该HTM优异的成膜能力使得能够制造基于FTPE-ST的大规模PSC(1.0 cm)和模块(29.0 cm),它们分别实现了24.21%(认证为24.17%)和21.27%的PCE。