Suppr超能文献

利用李代数对称性扩展精确可解哈密顿量

Extension of Exactly-Solvable Hamiltonians Using Symmetries of Lie Algebras.

作者信息

Patel Smik, Yen Tzu-Ching, Izmaylov Artur F

机构信息

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.

出版信息

J Phys Chem A. 2024 May 23;128(20):4150-4159. doi: 10.1021/acs.jpca.4c00993. Epub 2024 May 8.

Abstract

Exactly solvable Hamiltonians that can be diagonalized by using relatively simple unitary transformations are of great use in quantum computing. They can be employed for the decomposition of interacting Hamiltonians either in Trotter-Suzuki approximations of the evolution operator for the quantum phase estimation algorithm or in the quantum measurement problem for the variational quantum eigensolver. One of the typical forms of exactly solvable Hamiltonians is a linear combination of operators forming a modestly sized Lie algebra. Very frequently, such linear combinations represent noninteracting Hamiltonians and thus are of limited interest for describing interacting cases. Here, we propose an extension in which the coefficients in these combinations are substituted by polynomials of the Lie algebra symmetries. This substitution results in a more general class of solvable Hamiltonians, and for qubit algebras, it is related to the recently proposed noncontextual Pauli Hamiltonians. In fermionic problems, this substitution leads to Hamiltonians with eigenstates that are single Slater determinants but with different sets of single-particle states for different eigenstates. The new class of solvable Hamiltonians can be measured efficiently using quantum circuits with gates that depend on the result of a midcircuit measurement of the symmetries.

摘要

通过相对简单的酉变换可对角化的精确可解哈密顿量在量子计算中非常有用。它们可用于在量子相位估计算法的演化算符的 Trotter - Suzuki 近似中,或在变分量子本征求解器的量子测量问题中分解相互作用的哈密顿量。精确可解哈密顿量的典型形式之一是形成适度规模李代数的算符的线性组合。非常常见的是,这种线性组合表示非相互作用的哈密顿量,因此对于描述相互作用的情况兴趣有限。在这里,我们提出一种扩展,其中这些组合中的系数被李代数对称性的多项式所取代。这种取代导致了一类更一般的可解哈密顿量,对于量子比特代数,它与最近提出的非上下文泡利哈密顿量有关。在费米子问题中,这种取代导致哈密顿量的本征态是单个斯莱特行列式,但不同本征态具有不同的单粒子态集。可以使用依赖于对称性的中间电路测量结果的门的量子电路有效地测量新的可解哈密顿量类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验