Suppr超能文献

利用酉变换在一系列单量子比特测量中测量所有兼容算符。

Measuring All Compatible Operators in One Series of Single-Qubit Measurements Using Unitary Transformations.

作者信息

Yen Tzu-Ching, Verteletskyi Vladyslav, Izmaylov Artur F

机构信息

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.

出版信息

J Chem Theory Comput. 2020 Apr 14;16(4):2400-2409. doi: 10.1021/acs.jctc.0c00008. Epub 2020 Mar 18.

Abstract

The Variational Quantum Eigensolver approach to the electronic structure problem on a quantum computer involves measurement of the Hamiltonian expectation value. Formally, quantum mechanics allows one to measure all mutually commuting or compatible operators simultaneously. Unfortunately, the current hardware permits measuring only a much more limited subset of operators that share a common tensor product eigen-basis. We introduce unitary transformations that transform any fully commuting group of operators to a group that can be measured on current hardware. These unitary operations can be encoded as a sequence of Clifford gates and let us not only measure much larger groups of terms but also to obtain these groups efficiently on a classical computer. The problem of finding the minimum number of fully commuting groups of terms covering the whole Hamiltonian is found to be equivalent to the minimum clique cover problem for a graph representing Hamiltonian terms as vertices and commutativity between them as edges. Tested on a set of molecular electronic Hamiltonians with up to 50 thousand terms, the introduced technique allows for the reduction of the number of separately measurable operator groups down to few hundreds, thus achieving up to 2 orders of magnitude reduction. Based on the test set results, the obtained gain scales at least linearly with the number of qubits.

摘要

量子计算机上用于解决电子结构问题的变分量子本征求解器方法涉及哈密顿量期望值的测量。形式上,量子力学允许人们同时测量所有相互对易或兼容的算符。不幸的是,当前的硬件仅允许测量共享共同张量积本征基的算符的一个更为有限的子集。我们引入酉变换,将任何完全对易的算符组变换为可以在当前硬件上测量的算符组。这些酉操作可以编码为一系列克利福德门,这不仅让我们能够测量更大的项组,还能在经典计算机上高效地获得这些项组。发现找到覆盖整个哈密顿量的项的完全对易组的最小数量的问题等同于一个图的最小团覆盖问题,该图将哈密顿量项表示为顶点,它们之间的对易性表示为边。在一组包含多达50000个项的分子电子哈密顿量上进行测试时,所引入的技术可将单独可测量的算符组数量减少到几百个,从而实现高达2个数量级的减少。基于测试集结果,所获得的增益至少与量子比特数呈线性比例关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验