Suppr超能文献

结构域间旋转的动力学促进了 FtsZ 丝状体的组装。

Dynamics of interdomain rotation facilitates FtsZ filament assembly.

机构信息

Biology Division, Indian Institute of Science Education and Research, Pune, India.

School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India.

出版信息

J Biol Chem. 2024 Jun;300(6):107336. doi: 10.1016/j.jbc.2024.107336. Epub 2024 May 7.

Abstract

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZ exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZ resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.

摘要

FtsZ 是一种与细菌细胞分裂有关的微管同源物,它在分裂部位组装成 Z 环,并通过履带式运动指导肽聚糖的合成。目前尚不清楚 FtsZ 如何实现驱动履带式运动的动力学极性。为了在不依赖肽聚糖合成的情况下获得对 FtsZ 组装动力学基本特征的深入了解,我们对无细胞壁细菌——蜜环菌(Spiroplasma melliferum)的 FtsZ 进行了结构和生化特性分析。有趣的是,分别与 GDP 和 GMPPNP 结合的 SmFtsZ 结构被捕获为结构域交换二聚体。与大肠杆菌 FtsZ(EcFtsZ)相比,SmFtsZ 的 GTPase 活性较慢,临界浓度(CC)较高。在 FtsZs 中,从 R 态(关闭)到 T 态(打开)的构象转换有利于聚合。我们确定位于 SmFtsZ 结构域裂缝处的苯丙氨酸 224 对 R 态到 T 态的转变至关重要。SmFtsZ 表现出更高的 GTPase 活性和更低的 CC,而相应的 EcFtsZ 导致大肠杆菌的细胞分裂缺陷。我们的结果表明,结构域的相对旋转是聚合的限速步骤。我们的结构分析表明,这种旋转可能是通过与预先形成的 N 端结构域(NTD)相互作用,将一个结合 GTP 的单体添加到纤维中来触发的。因此,与 C 端结构域(CTD)末端相比,单体添加到 NTD 暴露的纤维末端较慢,从而解释了动力学极性。总之,该研究强调了结构域相互作用和构象变化在调节 FtsZ 组装动力学中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc8d/11157280/191655da9e4e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验