Suppr超能文献

基于增强现实和机器学习的箱式和积木测试对脑卒中患者手灵活性的评估。

Ηand dexterities assessment in stroke patients based on augmented reality and machine learning through a box and block test.

机构信息

Biomechanics Laboratory, Physiotherapy Department, University of the Peloponnese, 23100, Sparta, Greece.

Physioloft, Physiotherapy Center, 14562, Kifisia, Greece.

出版信息

Sci Rep. 2024 May 8;14(1):10598. doi: 10.1038/s41598-024-61070-x.

Abstract

A popular and widely suggested measure for assessing unilateral hand motor skills in stroke patients is the box and block test (BBT). Our study aimed to create an augmented reality enhanced version of the BBT (AR-BBT) and evaluate its correlation to the original BBT for stroke patients. Following G-power analysis, clinical examination, and inclusion-exclusion criteria, 31 stroke patients were included in this study. AR-BBT was developed using the Open Source Computer Vision Library (OpenCV). The MediaPipe's hand tracking library uses a palm and a hand landmark machine learning model to detect and track hands. A computer and a depth camera were employed in the clinical evaluation of AR-BBT following the principles of traditional BBT. A strong correlation was achieved between the number of blocks moved in the BBT and the AR-BBT on the hemiplegic side (Pearson correlation = 0.918) and a positive statistically significant correlation (p = 0.000008). The conventional BBT is currently the preferred assessment method. However, our approach offers an advantage, as it suggests that an AR-BBT solution could remotely monitor the assessment of a home-based rehabilitation program and provide additional hand kinematic information for hand dexterities in AR environment conditions. Furthermore, it employs minimal hardware equipment.

摘要

评估脑卒中患者单侧手部运动技能的一种常用且广泛建议的方法是箱式和木块测试(BBT)。我们的研究旨在创建 BBT 的增强现实增强版(AR-BBT),并评估其与脑卒中患者原始 BBT 的相关性。在进行 G- power 分析、临床检查和纳入排除标准后,本研究纳入了 31 名脑卒中患者。AR-BBT 是使用开源计算机视觉库(OpenCV)开发的。MediaPipe 的手部跟踪库使用手掌和手部地标机器学习模型来检测和跟踪手部。根据传统 BBT 的原则,在临床评估 AR-BBT 时使用了计算机和深度相机。在偏瘫侧,BBT 和 AR-BBT 之间移动的木块数量之间存在很强的相关性(Pearson 相关系数=0.918),且具有统计学意义的正相关(p=0.000008)。目前,传统的 BBT 是首选的评估方法。然而,我们的方法具有优势,因为它表明 AR-BBT 解决方案可以远程监测基于家庭的康复计划的评估,并在 AR 环境条件下提供手部灵巧性的额外手部运动学信息。此外,它仅使用最小的硬件设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/173f/11079036/ac3c80f4b2db/41598_2024_61070_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验