National Institute for Medical Research, Dar es Salaam, Tanzania.
Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
Malar J. 2024 May 8;23(1):139. doi: 10.1186/s12936-024-04974-3.
In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country.
The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (F), Wright's fixation index (F), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection.
Based on F (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean F = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49).
The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.
2021 年和 2023 年,世界卫生组织分别批准了 RTS,S/AS01 和 R21/Matrix M 疟疾疫苗,用于在中度至高度疟疾传播的非洲国家对儿童进行常规免疫接种。这些疫苗由恶性疟原虫环子孢子蛋白(PfCSP)制成,但基因中的多态性引起了人们对针对特定菌株的反应和这些疫苗的长期疗效的关注。本研究评估了坦桑尼亚大陆不同疟疾传播强度地区寄生虫中的 PfCsp 遗传多样性、种群结构和选择特征,为该疫苗在该国引入前生成基线数据。
该分析涉及由疟疾基因社区项目生成的和作为其一部分的 589 个全基因组序列。这些样本于 2013 年至 2015 年 1 月期间在坦桑尼亚大陆的五个地区采集:莫罗戈罗和坦噶(穆赫扎)(中度传播区),以及卡盖拉(姆莱巴)、林迪(纳钦圭亚)和基戈马(乌吉吉)(高度传播区)。使用 Wright 的近亲系数(F)、Wright 的固定指数(F)、主成分分析、核苷酸多样性和 Tajima 的 D 评估宿主内寄生虫多样性、种群结构和自然选择。
基于 F(<0.95),存在高度的多克隆性(从纳钦圭亚的 69.23%到穆赫扎的 56.9%)。在五个地区均未检测到 PfCsp 基因的种群结构(平均 F=0.0068)。五个地区的平均核苷酸多样性(π)、核苷酸分化(K)和单倍型多样性(Hd)分别为 4.19、0.973 和 0.0035。PfCsp 的 C 末端区域在 Th2R 和 Th3R 区域显示出高核苷酸多样性。Th2R 和 Th3R 区域 Tajima 的 D 的正值与平衡选择一致。PfCsp C 末端序列显示 50 种不同的单倍型(H_1 至 H_50),只有 2%的序列与 3D7 株单倍型(H_50)匹配。相反,与 NF54 株相比,PfCsp C 末端序列显示 49 种不同的单倍型(H_1 至 H_49),只有 0.4%的序列与 NF54 株(Hap_49)匹配。
研究结果表明 PfCsp 基因具有高度多样性,种群分化有限。PfCsp 基因显示出 Tajima 的 D 值为正,与 Th2R 和 Th3R 区域内变体的平衡选择一致。研究观察到预期纳入 RTS,S 和 R21 疫苗设计的单倍型与天然寄生虫种群中存在的单倍型之间存在差异。因此,需要进行更多的研究,纳入其他地区和最近的数据,以全面评估该重要基因内遗传多样性的趋势。这些见解将为未来疫苗中选择等位基因提供信息。