Suppr超能文献

物理先验均值函数驱动的高斯过程结合爬山影像推挤弹性带搜索最低能量反应路径:一种适用于气相、界面相和体相反应的通用方法

Physical Prior Mean Function-Driven Gaussian Processes Search for Minimum-Energy Reaction Paths with a Climbing-Image Nudged Elastic Band: A General Method for Gas-Phase, Interfacial, and Bulk-Phase Reactions.

作者信息

Teng Chong, Wang Yang, Bao Junwei Lucas

机构信息

Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.

出版信息

J Chem Theory Comput. 2024 May 28;20(10):4308-4324. doi: 10.1021/acs.jctc.4c00291. Epub 2024 May 8.

Abstract

The climbing-image nudged elastic band (CI-NEB) method serves as an indispensable tool for computational chemists, offering insight into minimum-energy reaction paths (MEPs) by delineating both transition states (TSs) and intermediate nonstationary structures along reaction coordinates. However, executing CI-NEB calculations for reactions with extensive reaction coordinate spans necessitates a large number of images to ensure a reliable convergence of the MEPs and TS structures, presenting a computationally demanding optimization challenge, even with mildly costly electronic-structure methods. In this study, we advocate for the utilization of physically inspired prior mean function-based Gaussian processes (GPs) to expedite MEP exploration and TS optimization via the CI-NEB method. By incorporating reliable prior physical approximations into potential energy surface (PES) modeling, we demonstrate enhanced efficiency in multidimensional CI-NEB optimization with surrogate-based optimizers. Our physically informed GP approach not only outperforms traditional nonsurrogate-based optimizers in optimization efficiency but also on-the-fly learns the reaction path valley during optimization, culminating in significant advancements. The surrogate PES derived from our optimization exhibits high accuracy compared to true PES references, aligning with our emphasis on leveraging reliable physical priors for robust and efficient posterior mean learning in GPs. Through a systematic benchmark study encompassing various reaction pathways, including gas-phase, bulk-phase, and interfacial/surface reactions, our physical GPs consistently demonstrate superior efficiency and reliability. For instance, they outperform the popular fast inertial relaxation engine optimizer by approximately a factor of 10, showcasing their versatility and efficacy in exploring reaction mechanisms and surface reaction PESs.

摘要

爬坡图像推挤弹性带(CI-NEB)方法是计算化学家不可或缺的工具,通过沿反应坐标描绘过渡态(TSs)和中间非平稳结构,深入了解最小能量反应路径(MEPs)。然而,对于具有广泛反应坐标跨度的反应执行CI-NEB计算需要大量图像,以确保MEPs和TS结构的可靠收敛,这带来了计算要求很高的优化挑战,即使使用成本适中的电子结构方法也是如此。在本研究中,我们提倡利用基于物理启发的先验均值函数的高斯过程(GPs),通过CI-NEB方法加速MEP探索和TS优化。通过将可靠的先验物理近似纳入势能面(PES)建模,我们展示了基于代理优化器的多维CI-NEB优化的更高效率。我们基于物理知识的GP方法不仅在优化效率上优于传统的非代理优化器,并在优化过程中即时学习反应路径谷,最终取得显著进展。与真实PES参考相比,我们优化得到的代理PES表现出高精度,这与我们强调在GPs中利用可靠的物理先验进行稳健和高效的后验均值学习相一致。通过涵盖各种反应途径(包括气相、体相和界面/表面反应)的系统基准研究,我们的物理GPs始终表现出卓越的效率和可靠性。例如,它们的性能比流行的快速惯性松弛引擎优化器高出约10倍,展示了其在探索反应机理和表面反应PES方面的通用性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验