Jeong Yoo Jae, Tan Runfa, Nam Seongsik, Lee Jong Ho, Kim Sung Kyu, Lee Tae Gyu, Shin Seong Sik, Zheng Xiaolin, Cho In Sun
Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.
Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea.
Adv Mater. 2025 Jul;37(26):e2403164. doi: 10.1002/adma.202403164. Epub 2024 May 30.
Surface reconstruction, reorganizing the surface atoms or structure, is a promising strategy to manipulate materials' electrical, electrochemical, and surface catalytic properties. Herein, a rapid surface reconstruction of indium sulfide (InS) is demonstrated via a high-temperature flame treatment to improve its charge collection properties. The flame process selectively transforms the InS surface into a diffusionless InO layer with high crystallinity. Additionally, it controllably generates bulk sulfur vacancies within a few seconds, leading to surface-reconstructed InS (sr-InS). When using those sr-InS as photoanode for photoelectrochemical water splitting devices, these dual functions of surface InO/bulk InS reduce the charge recombination in the surface and bulk region, thus improving photocurrent density and stability. With optimized surface reconstruction, the sr-InS photoanode demonstrates a significant photocurrent density of 8.5 mA cm at 1.23 V versus a reversible hydrogen electrode (RHE), marking a 2.5-fold increase compared to pristine InS (3.5 mA cm). More importantly, the sr-InS photoanode exhibits an impressive photocurrent density of 7.3 mA cm at 0.6 V versus RHE for iodide oxidation reaction. A practical and scalable surface reconstruction is also showcased via flame treatment. This work provides new insights for surface reconstruction engineering in sulfide-based semiconductors, making a breakthrough in developing efficient solar-fuel energy devices.
表面重构,即重新组织表面原子或结构,是一种操纵材料电学、电化学和表面催化性能的很有前景的策略。在此,通过高温火焰处理展示了硫化铟(InS)的快速表面重构,以改善其电荷收集性能。火焰处理过程选择性地将InS表面转变为具有高结晶度的无扩散InO层。此外,它能在几秒钟内可控地产生大量硫空位,从而得到表面重构的InS(sr-InS)。当将这些sr-InS用作光电化学水分解装置的光阳极时,表面InO/体相InS的这两种功能减少了表面和体相区域的电荷复合,从而提高了光电流密度和稳定性。通过优化表面重构,sr-InS光阳极在相对于可逆氢电极(RHE)为1.23 V时表现出8.5 mA cm的显著光电流密度,与原始InS(3.5 mA cm)相比提高了2.5倍。更重要的是,sr-InS光阳极在相对于RHE为0.6 V时对于碘化物氧化反应表现出7.3 mA cm的令人印象深刻的光电流密度。还通过火焰处理展示了一种实用且可扩展的表面重构。这项工作为基于硫化物的半导体中的表面重构工程提供了新的见解,在开发高效太阳能燃料能量装置方面取得了突破。