Wang Jingkun, Muhammad Naik, Chuai Zijing, Xu Wenping, Tan Xiujie, Zhou Qiqiao, Yu Yuan, Guo Junjie, Li Tianbao, Xu Bingshe
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.
Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202507259. doi: 10.1002/anie.202507259. Epub 2025 Jun 23.
Sluggish hole transport kinetics are one of the key limitations of bismuth vanadate (BiVO) photoanodes in photoelectrochemical (PEC) water splitting, severely impeding the attainment of high solar-to-hydrogen (STH) conversion efficiency. Herein, a copper sulfide (CuS) hole transfer layer (HTL) with photothermal effect is reported to markedly enhance the PEC water splitting via the synergistic action of photothermal effect and hole transfer. This is demonstrated in the BiVO/CuS/NiFeCoO photoanode, where the CuS layer establishes a transport channel for photogenerated holes, effectively inhibiting charge recombination and trapping. Additionally, the thermal effect induced by localized surface plasmon resonance (LSPR) enhances the water oxidation activity of the surface NiFeCoO cocatalyst and boosts the charge mobility. The optimized BiVO/CuS/NiFeCoO photoanode exhibits exceptional performance, achieving a water oxidation photocurrent density of 6.56 mA cm at 1.23 V versus reversible hydrogen electrode (V) and a STH conversion efficiency of 7.17% when connected in series with Si solar cells. Experimental analyzes and density functional theory (DFT) calculations collectively reveal the pivotal role of CuS HTL in facilitating carrier separation and transport. This work highlights the potential of interfacial engineering to facilitate charge separation and transfer, providing a new strategy for the construction of photoanodes to achieve efficient water splitting.
缓慢的空穴传输动力学是钒酸铋(BiVO)光阳极在光电化学(PEC)水分解中的关键限制之一,严重阻碍了高太阳能到氢能(STH)转换效率的实现。在此,据报道一种具有光热效应的硫化铜(CuS)空穴传输层(HTL)通过光热效应和空穴传输的协同作用显著增强了PEC水分解。这在BiVO/CuS/NiFeCoO光阳极中得到了证明,其中CuS层为光生空穴建立了传输通道,有效抑制了电荷复合和俘获。此外,由局域表面等离子体共振(LSPR)诱导的热效应增强了表面NiFeCoO助催化剂的水氧化活性并提高了电荷迁移率。优化后的BiVO/CuS/NiFeCoO光阳极表现出优异的性能,在相对于可逆氢电极(V)为1.23 V时实现了6.56 mA cm的水氧化光电流密度,与硅太阳能电池串联时的STH转换效率为7.17%。实验分析和密度泛函理论(DFT)计算共同揭示了CuS HTL在促进载流子分离和传输中的关键作用。这项工作突出了界面工程在促进电荷分离和转移方面的潜力,为构建实现高效水分解的光阳极提供了一种新策略。