Suppr超能文献

开发并验证预测急性严重创伤性脑损伤患者死亡率的列线图:一项回顾性分析。

Development and validation of a nomogram for predicting mortality in patients with acute severe traumatic brain injury: A retrospective analysis.

机构信息

Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.

The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.

出版信息

Neurol Sci. 2024 Oct;45(10):4931-4956. doi: 10.1007/s10072-024-07572-y. Epub 2024 May 9.

Abstract

BACKGROUND

Recent evidence links the prognosis of traumatic brain injury (TBI) to various factors, including baseline clinical characteristics, TBI specifics, and neuroimaging outcomes. This study focuses on identifying risk factors for short-term survival in severe traumatic brain injury (sTBI) cases and developing a prognostic model.

METHODS

Analyzing 430 acute sTBI patients from January 2018 to December 2023 at the 904th Hospital's Neurosurgery Department, this retrospective case-control study separated patients into survival outcomes: 288 deceased and 142 survivors. It evaluated baseline, clinical, hematological, and radiological data to identify risk and protective factors through univariate and Lasso regression. A multivariate model was then formulated to pinpoint independent prognostic factors, assessing their relationships via Spearman's correlation. The model's accuracy was gauged using the Receiver Operating Characteristic (ROC) curve, with additional statistical analyses for quantitative factors and model effectiveness. Internal validation employed ROC, calibration curves, Decision Curve Analysis (DCA), and Clinical Impact Curves (CIC) to assess model discrimination, utility, and accuracy. The International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) and Corticosteroid Randomization After Significant Head injury (CRASH) models were also compared through multivariate regression.

RESULTS

Factors like unilateral and bilateral pupillary non-reactivity at admission, the derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio (PLR), D-dimer to fibrinogen ratio (DFR), infratentorial hematoma, and Helsinki CT score were identified as independent risk factors (OR > 1), whereas serum albumin emerged as a protective factor (OR < 1). The model showed superior predictive performance with an AUC of 0.955 and surpassed both IMPACT and CRASH models in predictive accuracy. Internal validation confirmed the model's high discriminative capability, clinical relevance, and effectiveness.

CONCLUSIONS

Short-term survival in sTBI is significantly influenced by factors such as pupillary response, dNLR, PLR, DFR, serum albumin levels, infratentorial hematoma occurrence, and Helsinki CT scores at admission. The developed nomogram accurately predicts sTBI outcomes, offering significant clinical utility.

摘要

背景

最近的证据表明,创伤性脑损伤(TBI)的预后与多种因素有关,包括基线临床特征、TBI 具体情况和神经影像学结果。本研究旨在确定严重创伤性脑损伤(sTBI)病例短期生存的危险因素,并建立预后模型。

方法

对 2018 年 1 月至 2023 年 12 月在 904 医院神经外科就诊的 430 例急性 sTBI 患者进行回顾性病例对照研究,将患者分为生存结局:288 例死亡和 142 例存活。评估基线、临床、血液学和影像学数据,通过单变量和 Lasso 回归确定风险和保护因素。然后构建多变量模型,确定独立的预后因素,并通过 Spearman 相关性评估它们之间的关系。使用受试者工作特征(ROC)曲线评估模型的准确性,并对定量因素和模型有效性进行额外的统计分析。内部验证采用 ROC、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)评估模型的区分度、效用和准确性。还通过多变量回归比较了国际创伤预后和分析临床试验(IMPACT)和颅脑创伤后皮质类固醇随机化(CRASH)模型。

结果

入院时单侧和双侧瞳孔无反应、衍生中性粒细胞与淋巴细胞比值(dNLR)、血小板与淋巴细胞比值(PLR)、D-二聚体与纤维蛋白原比值(DFR)、小脑幕下血肿和赫尔辛基 CT 评分等因素被确定为独立的危险因素(OR>1),而血清白蛋白则为保护因素(OR<1)。该模型具有较高的预测性能,AUC 为 0.955,在预测准确性方面优于 IMPACT 和 CRASH 模型。内部验证证实了该模型具有较高的区分能力、临床相关性和有效性。

结论

sTBI 患者的短期生存受到瞳孔反应、dNLR、PLR、DFR、血清白蛋白水平、小脑幕下血肿发生和入院时赫尔辛基 CT 评分等因素的显著影响。所开发的列线图能够准确预测 sTBI 结局,具有重要的临床应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验