Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Republic of Singapore.
School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417, Republic of Singapore.
Cancer Res Commun. 2024 Jun 26;4(6):1581-1596. doi: 10.1158/2767-9764.CRC-23-0442.
Immune checkpoint therapy (ICB) has conferred significant and durable clinical benefit to some patients with cancer. However, most patients do not respond to ICB, and reliable biomarkers of ICB response are needed to improve patient stratification. Here, we performed a transcriptome-wide meta-analysis across 1,486 tumors from ICB-treated patients and tumors with expected ICB outcomes based on microsatellite status. Using a robust transcriptome deconvolution approach, we inferred cancer- and stroma-specific gene expression differences and identified cell-type specific features of ICB response across cancer types. Consistent with current knowledge, stromal expression of CXCL9, CXCL13, and IFNG were the top determinants of favorable ICB response. In addition, we identified a group of potential immune-suppressive genes, including FCER1A, associated with poor response to ICB. Strikingly, PD-L1 expression in stromal cells, but not cancer cells, is correlated with ICB response across cancer types. Furthermore, the unbiased transcriptome-wide analysis failed to identify cancer-cell intrinsic expression signatures of ICB response conserved across tumor types, suggesting that cancer cells lack tissue-agnostic transcriptomic features of ICB response.
Our results challenge the prevailing dogma that cancer cells present tissue-agnostic molecular markers that modulate immune activity and ICB response, which has implications on the development of improved ICB diagnostics and treatments.
免疫检查点治疗(ICB)为一些癌症患者带来了显著且持久的临床益处。然而,大多数患者对 ICB 没有反应,需要可靠的 ICB 反应生物标志物来改善患者分层。在这里,我们对来自接受 ICB 治疗的患者和基于微卫星状态预计具有 ICB 结局的肿瘤的 1486 个肿瘤进行了全转录组荟萃分析。使用强大的转录组去卷积方法,我们推断了癌症和基质特异性基因表达差异,并鉴定了跨癌症类型的 ICB 反应的细胞类型特异性特征。与现有知识一致,CXCL9、CXCL13 和 IFNG 的基质表达是 ICB 反应良好的最主要决定因素。此外,我们鉴定了一组潜在的免疫抑制基因,包括与 ICB 反应不良相关的 FCER1A。引人注目的是,基质细胞而非癌细胞中 PD-L1 的表达与跨癌症类型的 ICB 反应相关。此外,无偏的全转录组分析未能鉴定出跨肿瘤类型保守的 ICB 反应的癌症细胞内在表达特征,这表明癌症细胞缺乏组织不可知的 ICB 反应的转录组特征。
我们的结果挑战了这样一种流行观点,即癌症细胞呈现出组织不可知的分子标志物,调节免疫活性和 ICB 反应,这对开发改进的 ICB 诊断和治疗具有影响。