Northeast Ohio Medical University, 4209 St Rt 44, PO Box 95, Rootstown, OH 44272, USA.
Elanco 2500 Innovation Way, Greenfield, IN 46140, USA.
J Infect Public Health. 2024 Jun;17(6):1125-1133. doi: 10.1016/j.jiph.2024.04.014. Epub 2024 Apr 23.
During the COVID-19 pandemic, analytics and predictive models built on regional data provided timely, accurate monitoring of epidemiological behavior, informing critical planning and decision-making for health system leaders. At Atrium Health, a large, integrated healthcare system in the southeastern United States, a team of statisticians and physicians created a comprehensive forecast and monitoring program that leveraged an array of statistical methods.
The program utilized the following methodological approaches: (i) exploratory graphics, including time plots of epidemiological metrics with smoothers; (ii) infection prevalence forecasting using a Bayesian epidemiological model with time-varying infection rate; (iii) doubling and halving times computed using changepoints in local linear trend; (iv) death monitoring using combination forecasting with an ensemble of models; (v) effective reproduction number estimation with a Bayesian approach; (vi) COVID-19 patients hospital census monitored via time series models; and (vii) quantified forecast performance.
A consolidated forecast and monitoring report was produced weekly and proved to be an effective, vital source of information and guidance as the healthcare system navigated the inherent uncertainty of the pandemic. Forecasts provided accurate and precise information that informed critical decisions on resource planning, bed capacity and staffing management, and infection prevention strategies.
In this paper, we have presented the framework used in our epidemiological forecast and monitoring program at Atrium Health, as well as provided recommendations for implementation by other healthcare systems and institutions to facilitate use in future pandemics.
在 COVID-19 大流行期间,基于区域数据构建的分析和预测模型为及时、准确地监测流行病学行为提供了支持,为卫生系统领导者的关键规划和决策提供了信息。在美国东南部的一家大型综合性医疗保健系统 Atrium Health,一组统计学家和医生创建了一个综合的预测和监测计划,该计划利用了一系列统计方法。
该计划采用了以下方法:(i)探索性图形,包括具有平滑器的流行病学指标的时间图;(ii)使用具有时变感染率的贝叶斯流行病学模型进行感染流行率预测;(iii)使用局部线性趋势中的变化点计算倍增和减半时间;(iv)使用组合预测和模型集合进行死亡监测;(v)使用贝叶斯方法估计有效繁殖数;(vi)通过时间序列模型监测 COVID-19 患者住院人数;(vii)量化预测性能。
每周制作一份综合预测和监测报告,该报告被证明是一种有效的、重要的信息和指导来源,帮助医疗系统应对大流行带来的固有不确定性。预测提供了准确和精确的信息,为资源规划、床位容量和人员管理以及感染预防策略等关键决策提供了信息。
在本文中,我们介绍了 Atrium Health 使用的流行病学预测和监测计划框架,并为其他医疗保健系统和机构提供了实施建议,以促进在未来大流行中的使用。