Montenegro Alexandra L, Rey-Gozalo Guillermo, Arenas Jorge P, Suárez Enrique
LABACAM, Instituto de Acústica, Universidad Austral de Chile, Valdivia, Chile.
Laboratorio de Acústica (Lambda), Departamento de Física Aplicada, Instituto Universitario de Investigación para el Desarrollo Territorial Sostenible (INTERRA), Escuela Politécnica, Universidad de Extremadura, Avda. de La Universidad, s/n, 10003 Cáceres, Spain.
Sci Total Environ. 2024 Jul 1;932:173005. doi: 10.1016/j.scitotenv.2024.173005. Epub 2024 May 7.
Road traffic is the primary source of environmental noise pollution in cities. This problem is also spreading due to inadequate urban expansion planning. Hence, integrating road traffic noise analysis into urban planning is necessary for reducing city noise in an effective, adaptable, and sustainable way. This study aims to develop a methodology that applies to any city for the stratification of urban roads by their functionality through only their urban features. It is intended to be a tool to cluster similar streets and, consequently, traffic noise to enable urban and transportation planners to support the reduction of people's noise exposure. Three multivariate ordered logistic regression statistical models (Model 1, 2, and 3) are presented that significantly stratify urban roads into five, four, and three categories, respectively. The developed models exhibit a McFadden pseudo-R between 0.5 and 0.6 (equivalent to R >0.8). The choice between Model 1 or 2 depends on the scale of the city. Model 1 is recommended for developed cities with an extensive road network, while Model 2 is most suitable in intermediate and growing cities. On the other hand, Model 3 could be applied at any city scale but focused on local management of transit routes and for designing acoustic sensor installations, urban soundwalks, and identification of quiet areas. Urban features related to road width and length, presence of transport infrastructure, and public transport routes are associated with increased traffic noise in all three models. These models prove useful for future action plans aimed at reducing noise through strategic urban planning.
道路交通是城市环境噪声污染的主要来源。由于城市扩张规划不足,这个问题也在蔓延。因此,将道路交通噪声分析纳入城市规划对于以有效、适应性强和可持续的方式降低城市噪声是必要的。本研究旨在开发一种方法,仅通过城市特征就能适用于任何城市,根据道路功能对城市道路进行分层。它旨在成为一种工具,对相似街道以及相应的交通噪声进行聚类,使城市和交通规划者能够支持减少人们的噪声暴露。提出了三个多元有序逻辑回归统计模型(模型1、2和3),分别将城市道路显著地分层为五类、四类和三类。所开发的模型显示麦克法登伪R在0.5到0.6之间(相当于R>0.8)。模型1和2之间的选择取决于城市规模。对于道路网络广泛的发达城市,推荐使用模型1,而模型2最适合中等规模和发展中的城市。另一方面,模型3可应用于任何城市规模,但侧重于公交线路的局部管理以及用于设计声学传感器装置、城市声景漫步和安静区域识别。在所有三个模型中,与道路宽度和长度、交通基础设施的存在以及公共交通路线相关的城市特征都与交通噪声增加有关。这些模型被证明对未来旨在通过战略城市规划减少噪声的行动计划很有用。