Suppr超能文献

对城市道路进行聚类分类以优化其噪声监测。

Cluster categorization of urban roads to optimize their noise monitoring.

作者信息

Zambon G, Benocci R, Brambilla G

机构信息

Department of Earth and Environmental Sciences, Università degli Studi di Milano, Bicocca, Piazza dalla Scienza 1, 20126, Milan, Italy.

Istituto di Acustica e Sensoristica "Orso Mario Corbino", CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy.

出版信息

Environ Monit Assess. 2016 Jan;188(1):26. doi: 10.1007/s10661-015-4994-4. Epub 2015 Dec 12.

Abstract

Road traffic in urban areas is recognized to be associated with urban mobility and public health, and it is often the main source of noise pollution. Lately, noise maps have been considered a powerful tool to estimate the population exposure to environmental noise, but they need to be validated by measured noise data. The project Dynamic Acoustic Mapping (DYNAMAP), co-funded in the framework of the LIFE 2013 program, is aimed to develop a statistically based method to optimize the choice and the number of monitoring sites and to automate the noise mapping update using the data retrieved from a low-cost monitoring network. Indeed, the first objective should improve the spatial sampling based on the legislative road classification, as this classification is mainly based on the geometrical characteristics of the road, rather than its noise emission. The present paper describes the statistical approach of the methodology under development and the results of its preliminary application to a limited sample of roads in the city of Milan. The resulting categorization of roads, based on clustering the 24-h hourly L Aeqh, looks promising to optimize the spatial sampling of noise monitoring toward a description of the noise pollution due to complex urban road networks more efficient than that based on the legislative road classification.

摘要

城市道路交通与城市机动性和公众健康相关,并且常常是噪声污染的主要来源。近来,噪声地图被视为估算人群环境噪声暴露的有力工具,但需要通过实测噪声数据进行验证。在2013年生命计划框架内共同资助的“动态声学测绘”(DYNAMAP)项目,旨在开发一种基于统计的方法,以优化监测点的选择和数量,并利用从低成本监测网络获取的数据自动更新噪声地图。实际上,首要目标应基于立法道路分类改进空间采样,因为这种分类主要基于道路的几何特征,而非其噪声排放。本文描述了正在开发的方法的统计方法及其在米兰市有限道路样本上的初步应用结果。基于对24小时等效连续A声级(L Aeqh)进行聚类得到的道路分类结果,有望优化噪声监测的空间采样,以便更高效地描述复杂城市道路网络造成的噪声污染,比基于立法道路分类的描述更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3832/4751156/e4e3d900a203/10661_2015_4994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验