Intelligent Medical Objects, Houston, TX, USA.
McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
BMC Med Res Methodol. 2024 May 9;24(1):108. doi: 10.1186/s12874-024-02224-3.
Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases (PAPD), and (2) optimize machine- and deep-learning models to facilitate automation of the SLR abstract screening.
This study constructed two disease-specific SLR screening corpora for HPV and PAPD, which contained citation metadata and corresponding abstracts. Performance was evaluated using precision, recall, accuracy, and F1-score of multiple combinations of machine- and deep-learning algorithms and features such as keywords and MeSH terms.
The HPV corpus contained 1697 entries, with 538 relevant and 1159 irrelevant articles. The PAPD corpus included 2865 entries, with 711 relevant and 2154 irrelevant articles. Adding additional features beyond title and abstract improved the performance (measured in Accuracy) of machine learning models by 3% for HPV corpus and 2% for PAPD corpus. Transformer-based deep learning models that consistently outperformed conventional machine learning algorithms, highlighting the strength of domain-specific pre-trained language models for SLR abstract screening. This study provides a foundation for the development of more intelligent SLR systems.
系统文献综述(SLR)对生命科学研究至关重要。然而,手动选择和检索相关文献可能是一个耗时的过程。本研究旨在:(1)开发两个特定疾病的带注释语料库,一个用于人乳头瘤病毒(HPV)相关疾病,另一个用于肺炎球菌相关儿科疾病(PAPD);(2)优化机器和深度学习模型,以促进 SLR 摘要筛选的自动化。
本研究构建了两个特定疾病的 SLR 筛查语料库,用于 HPV 和 PAPD,其中包含引文元数据和相应的摘要。使用多种机器和深度学习算法的组合以及关键字和 MeSH 术语等特征的精度、召回率、准确性和 F1 分数来评估性能。
HPV 语料库包含 1697 条记录,其中 538 条为相关文章,1159 条为不相关文章。PAPD 语料库包含 2865 条记录,其中 711 条为相关文章,2154 条为不相关文章。除标题和摘要外添加其他特征可将机器学习模型的性能(以准确性衡量)提高 3%,HPV 语料库提高 2%,PAPD 语料库提高 2%。基于转换器的深度学习模型始终优于传统机器学习算法,这突显了针对 SLR 摘要筛选的特定领域预训练语言模型的优势。本研究为开发更智能的 SLR 系统提供了基础。