Shivakumar M R, Panchangam Murali Krishna
Department of Industrial Engineering and Management, M S Ramaiah Institute of Technology, Bangalore, 560 054, Karnataka, India.
Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, 560 054, Karnataka, India.
Heliyon. 2024 Apr 26;10(9):e30183. doi: 10.1016/j.heliyon.2024.e30183. eCollection 2024 May 15.
The present work describes the optimization of reinforcement parameters for hardness, thermal conductivity, and coefficient of thermal expansion while developing LM6 alloy/soda-lime glass particulate composite through Taguchi-based Grey Relational Analysis (GRA). Soda-lime glass particle weight % (1.5, 3.0 and 4.5 %), particle size (100, 150 and 300 μm) and pre-heat temperature (260, 380 and 500C) are varied accordingly to explore the effect of reinforcement parameters on LM6 alloy/soda-lime glass composite properties. Composites are developed through stir casting based on the L9 Taguchi orthogonal array approach. The properties such as hardness, thermal conductivity and oefficient of thermal expansion of developed composites are assessed. Signal to Noise Ratios (S/N ratios) are calculated and used for the optimization of parameters. GRA is employed for multi-response optimization to find the levels of parameters that affect the desirable properties of the composite. Thus, the reinforcement parameters are optimized for attaining the combined objectives of higher hardness, higher thermal conductivity and lower oefficient of thermal expansion values considered in this investigation. The analysis shows that 4.5 wt %, particle size of 200 μm and pre-heat temperature of 380C are optimal parameter levels. A confirmation test is carried out with the optimal parameter levels and the GRG value of 0.7778 is obtained. The GRG with the initial parameter settings is 0.4711, and the improvement of GRG is found to be 65.1 %. ANOVA is performed on GRG to find out significant parameters and the contribution of each parameter is identified. The wt.% of soda-lime glass is the most significant parameter and its contribution is 92.6 %.
本研究描述了在通过基于田口方法的灰色关联分析(GRA)开发LM6合金/钠钙玻璃颗粒复合材料时,对硬度、热导率和热膨胀系数的增强参数进行优化的过程。相应地改变钠钙玻璃颗粒重量百分比(1.5%、3.0%和4.5%)、颗粒尺寸(100、150和300μm)以及预热温度(260、380和500℃),以探究增强参数对LM6合金/钠钙玻璃复合材料性能的影响。基于L9田口正交阵列方法,通过搅拌铸造制备复合材料。对所制备复合材料的硬度、热导率和热膨胀系数等性能进行评估。计算信噪比(S/N比)并用于参数优化。采用灰色关联分析进行多响应优化,以找出影响复合材料理想性能的参数水平。因此,对增强参数进行优化,以实现本研究中所考虑的更高硬度、更高热导率和更低热膨胀系数值的综合目标。分析表明,4.5 wt%、200μm的颗粒尺寸和380℃的预热温度是最佳参数水平。使用最佳参数水平进行了验证试验,得到的灰色关联等级值为0.7778。初始参数设置下的灰色关联等级值为0.4711,灰色关联等级的提高率为65.1%。对灰色关联等级进行方差分析,以找出显著参数并确定每个参数的贡献。钠钙玻璃的重量百分比是最显著的参数,其贡献为92.6%。