Yang Wenguang, Wang Xiaowen, Teng Xiangyu, Qiao Zezheng, Yu Haibo, Yuan Zheng
School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Biomicrofluidics. 2024 May 1;18(3):034102. doi: 10.1063/5.0203482. eCollection 2024 May.
Deformation plays a vital role in the survival of natural organisms. One example is that plants deform themselves to face the sun for sufficient sunlight exposure, which allows them to produce nutrients through photosynthesis. Drawing inspiration from nature, researchers have been exploring the development of 3D deformable materials. However, the traditional approach to manufacturing deformable hydrogels relies on complex technology, which limits their potential applications. In this study, we simulate the stress variations observed in the plant tissue to create a 3D structure from a 2D material. Using UV curing technology, we create a single-layer poly(N-isopropylacrylamide) hydrogel sheet with microchannels that exhibit distinct swelling rates when subjected to stimulation. After a two-step curing process, we produce a poly(N-isopropylacrylamide)-polyethylene glycol diacrylatedouble-layer structure that can be manipulated to change its shape by controlling the light and solvent content. Based on the double-layer structure, we fabricate a dual-response driven bionic mimosa robot that can perform a variety of functions. This soft robot can not only reversibly change its shape but also maintain a specific shape without continuous stimulation. Its capacity for reversible deformation, resulting from internal stress, presents promising application prospects in the biomedical and soft robotics domain. This study delivers an insightful framework for the development of programmable soft materials.
变形在自然生物体的生存中起着至关重要的作用。一个例子是植物会自我变形以面向太阳,从而获得充足的阳光照射,使其能够通过光合作用产生养分。受自然启发,研究人员一直在探索3D可变形材料的开发。然而,传统的制造可变形水凝胶的方法依赖于复杂的技术,这限制了它们的潜在应用。在本研究中,我们模拟植物组织中观察到的应力变化,从二维材料创建三维结构。利用紫外线固化技术,我们创建了一个带有微通道的单层聚(N-异丙基丙烯酰胺)水凝胶片,当受到刺激时,这些微通道表现出不同的溶胀率。经过两步固化过程,我们制备了一种聚(N-异丙基丙烯酰胺)-聚乙二醇二丙烯酸酯双层结构,通过控制光和溶剂含量可以对其进行操作以改变形状。基于该双层结构,我们制造了一种双响应驱动的仿生含羞草机器人,它可以执行多种功能。这种软机器人不仅可以可逆地改变其形状,还可以在没有持续刺激的情况下保持特定形状。其由内部应力导致的可逆变形能力在生物医学和软机器人领域展现出广阔的应用前景。这项研究为可编程软材料的开发提供了一个有见地的框架。