Suppr超能文献

厚度驱动的共价有机框架纳米片的合成与应用

Thickness-Driven Synthesis and Applications of Covalent Organic Framework Nanosheets.

作者信息

Koner Kalipada, Sasmal Himadri Sekhar, Shetty Dinesh, Banerjee Rahul

机构信息

Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India.

Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.

出版信息

Angew Chem Int Ed Engl. 2024 Jul 29;63(31):e202406418. doi: 10.1002/anie.202406418. Epub 2024 Jun 19.

Abstract

Covalent organic frameworks (COFs) are two-dimensional, crystalline porous framework materials with numerous scopes for tunability, such as porosity, functionality, stability and aspect ratio (thickness to length ratio). The manipulation of π-stacking in COFs results in truly 2D materials, namely covalent organic nanosheets (CONs), adds advantages in many applications. In this Minireview, we have discussed both top-down (COFs→CONs) and bottom-up (molecules→CONs) approaches with precise information on thickness and lateral growth. We have showcased the research progress on CONs in a few selected applications, such as batteries, catalysis, sensing and biomedical applications. This Minireview specifically highlights the reports where the authors compare the performance of CONs with COFs by demonstrating the impact of the thickness and lateral growth of the nanosheets. We have also provided the possible scope of exploration of CONs research in terms of inter-dimensional conversion, such as graphene to carbon nanotube and future technologies.

摘要

共价有机框架(COFs)是二维晶体多孔框架材料,在孔隙率、功能、稳定性和纵横比(厚度与长度比)等诸多方面具有可调性。对COFs中π堆积的操控可产生真正的二维材料,即共价有机纳米片(CONs),这在许多应用中具有优势。在本综述中,我们讨论了自上而下(COFs→CONs)和自下而上(分子→CONs)的方法,并提供了有关厚度和横向生长的精确信息。我们展示了CONs在一些选定应用中的研究进展,如电池、催化、传感和生物医学应用。本综述特别强调了作者通过展示纳米片厚度和横向生长的影响来比较CONs与COFs性能的报告。我们还从维度间转换(如石墨烯到碳纳米管)及未来技术的角度提供了CONs研究的可能探索范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验